Landscape changes were traced over the 20 years from 1974 to 1995 in the upper Minjiang River basin, one of the most important forest regions in China, based on satellite image interpretation to provide basic data for...Landscape changes were traced over the 20 years from 1974 to 1995 in the upper Minjiang River basin, one of the most important forest regions in China, based on satellite image interpretation to provide basic data for local decision-making as well as sustainable landscape use and management. Results revealed that landscape from 1974 to 1995 changed at the regional scale as the area of forestland decreased, while cropland, shrubland, economic forest, grassland, and built-up land increased. Landscape changes mainly occurred in forestland, shrubland, grassland, economic forest, and built-up land. Moreover, the changes among forestland, shrubland, and grassland were the largest, influencing the whole characteristics of the changes in the basin. Analysis of the changes between 1974 and 1995 in the study area indicated that landscape heterogeneity and fragmentation increased, whereas landscape connectivity decreased. There were multiple reasons for landscape changes. A principal component analysis (PCA) was used to quantitatively study driving forces of landscape changes. The PCA results showed that economic and population factors were the principal driving forces of landscape changes from 1974 to 1995 in the upper Minjiang River basin, and that PCA was a suitable method for investigating driving forces of landscape changes.展开更多
We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling.In particular,we focus on the pairing superfluidity in these systems at zero temperature.Recent studies have sh...We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling.In particular,we focus on the pairing superfluidity in these systems at zero temperature.Recent studies have shown that different forms of spin-orbit coupling in various spatial dimensions can lead to a wealth of novel pairing superfluidity.A common theme of these variations is the emergence of new pairing mechanisms which are direct results of spin-orbit-coupling-modified single-particle dispersion spectra.As different configurations can give rise to single-particle dispersion spectra with drastic differences in symmetry,spin dependence and low-energy density of states,spin-orbit coupling is potentially a powerful tool of quantum control,which,when combined with other available control schemes in ultracold atomic gases,will enable us to engineer novel states of matter.展开更多
In this paper,we consider a localized problem with free boundary for the heat equation in higher space dimensions and heterogeneous environment.For simplicity,we assume that the environment and solution are radially s...In this paper,we consider a localized problem with free boundary for the heat equation in higher space dimensions and heterogeneous environment.For simplicity,we assume that the environment and solution are radially symmetric.First,by using the contraction mapping theorem,we prove that the local solution exists and is unique.Then,some sufficient conditions are given under which the solution will blow up in finite time.Our results indicate that the blowup occurs if the initial data are sufficiently large.Finally,the long time behavior of the global solution is discussed.It is shown that the global fast solution does exist if the initial data are sufficiently small,while the global slow solution is possible if the initial data are suitably large.展开更多
For the 3D focusing cubic nonlinear SchrSdinger equation, scattering of H1 solutions inside the (scale invariant) potential well was established by Holmer and Roudenko (radial case) and Duyckaerts et al. (general...For the 3D focusing cubic nonlinear SchrSdinger equation, scattering of H1 solutions inside the (scale invariant) potential well was established by Holmer and Roudenko (radial case) and Duyckaerts et al. (general case) in 2008. In this paper, we extend this result to arbitrary space dimensions and focusing, mass-supercritical and energy-subcritical power nonlinearities, by adapting the method of Duyckaerts et al.展开更多
基金Project supported by the Major State Basic Research Development Program of China (973 Program)(No. 2002CB111506).
文摘Landscape changes were traced over the 20 years from 1974 to 1995 in the upper Minjiang River basin, one of the most important forest regions in China, based on satellite image interpretation to provide basic data for local decision-making as well as sustainable landscape use and management. Results revealed that landscape from 1974 to 1995 changed at the regional scale as the area of forestland decreased, while cropland, shrubland, economic forest, grassland, and built-up land increased. Landscape changes mainly occurred in forestland, shrubland, grassland, economic forest, and built-up land. Moreover, the changes among forestland, shrubland, and grassland were the largest, influencing the whole characteristics of the changes in the basin. Analysis of the changes between 1974 and 1995 in the study area indicated that landscape heterogeneity and fragmentation increased, whereas landscape connectivity decreased. There were multiple reasons for landscape changes. A principal component analysis (PCA) was used to quantitatively study driving forces of landscape changes. The PCA results showed that economic and population factors were the principal driving forces of landscape changes from 1974 to 1995 in the upper Minjiang River basin, and that PCA was a suitable method for investigating driving forces of landscape changes.
基金supported by National Fundamental Research Program of China(Grant Nos.2011CB921200 and 2011CBA00200)National Key Basic Research Program(Grant No.2013CB922000)+4 种基金National Natural Science Foundation(Grant No.60921091)National Science Foundation of China(Grant Nos.10904172,11104158,11374177,11105134,1127409and 11374283)the Fundamental Research Funds for the Central Universities(Grant No.WK2470000006)the Research Funds of Renmin University of China(Grant No.10XNL016)the programs of Chinese Academy of Sciences
文摘We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling.In particular,we focus on the pairing superfluidity in these systems at zero temperature.Recent studies have shown that different forms of spin-orbit coupling in various spatial dimensions can lead to a wealth of novel pairing superfluidity.A common theme of these variations is the emergence of new pairing mechanisms which are direct results of spin-orbit-coupling-modified single-particle dispersion spectra.As different configurations can give rise to single-particle dispersion spectra with drastic differences in symmetry,spin dependence and low-energy density of states,spin-orbit coupling is potentially a powerful tool of quantum control,which,when combined with other available control schemes in ultracold atomic gases,will enable us to engineer novel states of matter.
基金supported by National Natural Science Foundation of China (Grant Nos.11071209 and 10801115)the PhD Programs Foundation of Ministry of Education of China (Grant No.20113250110005)
文摘In this paper,we consider a localized problem with free boundary for the heat equation in higher space dimensions and heterogeneous environment.For simplicity,we assume that the environment and solution are radially symmetric.First,by using the contraction mapping theorem,we prove that the local solution exists and is unique.Then,some sufficient conditions are given under which the solution will blow up in finite time.Our results indicate that the blowup occurs if the initial data are sufficiently large.Finally,the long time behavior of the global solution is discussed.It is shown that the global fast solution does exist if the initial data are sufficiently small,while the global slow solution is possible if the initial data are suitably large.
基金supported by National Natural Science Foundation of China (Grants Nos. 10871175, 10931007)Zhejiang Natural Science Foundation (Grants No. Z6100217)Zhejiang University's Pao Yu-Kong International Fund
文摘For the 3D focusing cubic nonlinear SchrSdinger equation, scattering of H1 solutions inside the (scale invariant) potential well was established by Holmer and Roudenko (radial case) and Duyckaerts et al. (general case) in 2008. In this paper, we extend this result to arbitrary space dimensions and focusing, mass-supercritical and energy-subcritical power nonlinearities, by adapting the method of Duyckaerts et al.