期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7算法的接触网吊弦线夹螺母状态识别方法
1
作者 曹文翔 顾桂梅 《兰州交通大学学报》 CAS 2024年第2期68-75,共8页
针对传统的深度学习算法在处理铁路接触网吊弦线夹螺母时效果不佳,而人工巡检吊弦线夹螺母速度慢、难度大问题,提出一种改进的YOLOv7算法对接触网吊弦线夹螺母状态进行识别。首先,该算法在YOLOv7原有模型特征提取网络的末端融合卷积和... 针对传统的深度学习算法在处理铁路接触网吊弦线夹螺母时效果不佳,而人工巡检吊弦线夹螺母速度慢、难度大问题,提出一种改进的YOLOv7算法对接触网吊弦线夹螺母状态进行识别。首先,该算法在YOLOv7原有模型特征提取网络的末端融合卷积和自我注意力机制,使算法既拥有注意力和卷积的优势,又与单一的卷积或注意力相比具有较小的计算量,以提升缺陷检测的速度;然后,在特征提取网络的输出端引入空间到深度卷积模块,以空间层到深度层取代池化层,以非跨行卷积层取代跨行卷积层,强化算法对螺母缺陷状态的识别能力;最后,在输出层加入新的移动网络轻量级坐标注意力机制,以得到方向感知和位置敏感的注意图,互补地应用于输出特征图,以更有利于接触网吊弦线夹螺母的识别。仿真实验结果表明:在未经裁剪的接触网吊弦数据集上,该算法对吊弦线夹螺母状态识别的正确率达到90%以上,平均检测准确率为98.5%,证明改进后YOLOv7算法在兼具检测速度的同时能更加准确地识别接触网吊弦线夹螺母状态。 展开更多
关键词 接触网吊弦 吊弦线夹螺母状态识别 YOLOv7 自注意力与卷积融合 空间深度卷积模块
下载PDF
基于改进YOLOX的水下垃圾检测算法
2
作者 赵鑫 于波 +1 位作者 徐慧琳 韦小牙 《怀化学院学报》 2023年第5期77-83,共7页
基于机器视觉的水下垃圾清理机器人已经成为修复海洋生态的一种有效手段,但是由于复杂的水下环境会造成采集图像的分辨率较低,导致垃圾检测精度较低。针对上述问题,提出一种基于改进YOLOX-S网络的水下垃圾检测算法,该算法通过采用空间... 基于机器视觉的水下垃圾清理机器人已经成为修复海洋生态的一种有效手段,但是由于复杂的水下环境会造成采集图像的分辨率较低,导致垃圾检测精度较低。针对上述问题,提出一种基于改进YOLOX-S网络的水下垃圾检测算法,该算法通过采用空间到深度卷积模块代替下采样模块提高了图像中物体有效特征的提取能力,提升了其检测精度;主干网络引入空洞空间卷积池化金字塔模块增强了深层特征提取能力,以及颈部网络引入轻量化幽灵混洗卷积模块和Vov幽灵混洗跨阶段瓶颈模块获取了更多的多尺度特征信息,进一步提升检测精度。实验结果表明,在YOLOX网络中引入空间到深度卷积模块、幽灵混洗卷积模块和Vov幽灵混洗跨阶段瓶颈模块、空洞空间卷积池化金字塔模块均可提高YOLOX模型的检测精度。改进后YOLOX-S模型的平均精度均值(mean average precision,mAP)达到了67.4%,较原YOLOX-S模型提高了3.1%,有效提升了复杂海洋环境中的垃圾检测能力。 展开更多
关键词 YOLOX 幽灵混洗卷积模块 空洞卷积 空间深度卷积模块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部