为了消除噪声对轴承诊断效果的影响,提出了一种局域均值分解(Local mean decomposition,LMD)和空域相关相结合的轴承声发射信号特征提取方法。首先,利用LMD将轴承故障的声发射信号分解为若干个乘积函数(Production Function,PF)的线性组...为了消除噪声对轴承诊断效果的影响,提出了一种局域均值分解(Local mean decomposition,LMD)和空域相关相结合的轴承声发射信号特征提取方法。首先,利用LMD将轴承故障的声发射信号分解为若干个乘积函数(Production Function,PF)的线性组合;然后,采用峭度准则选取能够反映轴承故障特征的PF分量,对选取的PF分量分别采用空域相关法进行去噪,再重构去噪后的PF分量。最后,对去噪后声发射信号进行Hilbert包络谱分析,并与所选PF分量直接Hilbert包络谱分析结果进行对比。仿真计算和实验分析表明,本文提出的方法能够有效地提取轴承故障声发射信号特征。展开更多
文摘为了消除噪声对轴承诊断效果的影响,提出了一种局域均值分解(Local mean decomposition,LMD)和空域相关相结合的轴承声发射信号特征提取方法。首先,利用LMD将轴承故障的声发射信号分解为若干个乘积函数(Production Function,PF)的线性组合;然后,采用峭度准则选取能够反映轴承故障特征的PF分量,对选取的PF分量分别采用空域相关法进行去噪,再重构去噪后的PF分量。最后,对去噪后声发射信号进行Hilbert包络谱分析,并与所选PF分量直接Hilbert包络谱分析结果进行对比。仿真计算和实验分析表明,本文提出的方法能够有效地提取轴承故障声发射信号特征。