期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于稀疏Transformer的遥感旋转目标检测 被引量:7
1
作者 何林远 白俊强 +2 位作者 贺旭 王晨 刘旭伦 《激光与光电子学进展》 CSCD 北大核心 2022年第18期45-53,共9页
针对遥感图像目标广邻域稀疏、多邻域聚集、方向多样等特性导致检测难度大的问题,提出了一种基于稀疏Transformer的遥感旋转目标检测方法。首先,所提方法在典型端到端Transformer网络的基础上,根据遥感图像的特性,利用Kmeans算法实现多... 针对遥感图像目标广邻域稀疏、多邻域聚集、方向多样等特性导致检测难度大的问题,提出了一种基于稀疏Transformer的遥感旋转目标检测方法。首先,所提方法在典型端到端Transformer网络的基础上,根据遥感图像的特性,利用Kmeans算法实现多域聚集,从而更好提取稀疏域下的目标特征;其次,为适配旋转目标的基本属性,在边框生成阶段,利用目标包围框的中心点及边框特征学习的策略高效获取目标回归斜边框;最后,为提升网络对遥感目标的检测率,对网络的损失函数进行了优化。在DOTA和UCASAOD遥感数据集上的实验结果表明,所提方法的平均精度分别为72.87%和90.4%,能很好地适应遥感图像中各类旋转目标的形状与分布特性。 展开更多
关键词 图像处理 遥感图像 旋转目标检测 稀疏transformer Kmeans
原文传递
基于稀疏Transformer的雷达点云三维目标检测 被引量:6
2
作者 韩磊 高永彬 史志才 《计算机工程》 CAS CSCD 北大核心 2022年第11期104-110,144,共8页
随着计算机视觉技术的发展,基于点云的三维目标检测算法被广泛应用于自动驾驶、机器人控制等领域。针对点云稀疏条件下基于点云三维目标检测算法鲁棒性较差、检测精度低的问题,提出基于稀疏Transformer的三维目标检测算法。在注意力矩... 随着计算机视觉技术的发展,基于点云的三维目标检测算法被广泛应用于自动驾驶、机器人控制等领域。针对点云稀疏条件下基于点云三维目标检测算法鲁棒性较差、检测精度低的问题,提出基于稀疏Transformer的三维目标检测算法。在注意力矩阵生成阶段,通过稀疏Transformer模块显式选择Top-t个权重元素,以保留有利于特征提取的权重元素,在降低环境噪点对鲁棒性影响的同时加快Transformer模块的运行速度。在回归阶段,将基于空间特征粗回归模块生成的边界框作为检测头模块的初始锚框,用于后续边界框的精细回归操作。设计基于体素的三维目标检测算法的损失函数,以精确地衡量类别损失、位置回归损失和方向损失。在KITTI数据集上的实验结果表明,相比PointPillars算法,该算法的平均精度均值提高3.46%,能有效提高点云三维目标的检测精度且具有较优的鲁棒性。相比原始Transformer模块,所提稀疏Transformer模块在点云图像上的平均运行速度加快了约0.54 frame/s。 展开更多
关键词 机器视觉 三维目标检测 稀疏transformer 粗回归 损失函数
下载PDF
高光谱图像去噪的稀疏空谱Transformer模型
3
作者 杨智翔 孙玉宝 +1 位作者 白志远 栾鸿康 《电子测量技术》 北大核心 2024年第1期150-158,共9页
现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对... 现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。 展开更多
关键词 高光谱图像去噪 空间-光谱联合特征 稀疏transformer
下载PDF
基于稀疏Transformer的长短时序关联动作识别算法
4
作者 廖健文 杨盈昀 卢玥 《中国传媒大学学报(自然科学版)》 2023年第6期56-63,共8页
针对主流的视频动作识别算法对时序信息的挖掘不充分,而Transformer能够更好地处理长序列和全局依赖性问题,本文将3DCNN和Transformer结合起来,提出了基于稀疏Transformer的长短时序关联动作识别算法,从而实现对视频的全局时序信息进行... 针对主流的视频动作识别算法对时序信息的挖掘不充分,而Transformer能够更好地处理长序列和全局依赖性问题,本文将3DCNN和Transformer结合起来,提出了基于稀疏Transformer的长短时序关联动作识别算法,从而实现对视频的全局时序信息进行建模。该算法提取预训练视频模型各个片段特征,嵌入视频特征聚类模块降低输入特征的潜在噪声,并利用基于稀疏自注意力的Transformer长短时序关联模块,引入稀疏掩码矩阵,对相似度矩阵进行掩码操作,抑制较小的注意力权重,选择性地保留重要的长短时序信息,提高模型对全局上下文信息的注意力集中程度。本文在UCF101和HMDB51数据集上进行了大量的实验,验证了本文算法的有效性,在参数量和计算复杂度较小的情况下准确率高于同类权威算法。 展开更多
关键词 深度学习 动作识别 稀疏transformer R3D-18
下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测
5
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 超短期风电功率预测 时间卷积网络 窗口概率稀疏transformer 窗口概率稀疏自注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部