期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于稀疏流形聚类嵌入模型和L_1范数正则化的标签错误检测 被引量:2
1
作者 夏建明 杨俊安 《控制与决策》 EI CSCD 北大核心 2014年第6期1103-1108,共6页
综合利用含错标签中的有用信息和数据结构中蕴含的鉴别信息,提出一种基于稀疏流形聚类嵌入模型和L1范数正则化的标签错误检测修正方法.首先,用稀疏流形聚类嵌入模型将数据投影到易分类的空间,利用标注正确的极少量样本和最近邻分类器获... 综合利用含错标签中的有用信息和数据结构中蕴含的鉴别信息,提出一种基于稀疏流形聚类嵌入模型和L1范数正则化的标签错误检测修正方法.首先,用稀疏流形聚类嵌入模型将数据投影到易分类的空间,利用标注正确的极少量样本和最近邻分类器获得新标签;然后,构造标签错误检测模型,获得仅含0、1元素的检测向量,正确、错误的标签分别对应着1、0的位置;最后,给出了相应的优化算法及收敛证明,并在相关实验上验证了算法的有效性. 展开更多
关键词 标签错误 稀疏流形嵌入 L1范数正则化 凸松弛
原文传递
机械故障的稀疏流形聚类与嵌入诊断方法
2
作者 王江萍 段腾飞 《机械科学与技术》 CSCD 北大核心 2017年第10期1582-1588,共7页
传统流形学习算法中邻域尺寸是固定的,在故障诊断中并不恰当。本文中提出了一种基于新型流形学习算法稀疏流形聚类与嵌入(SMCE)的机械故障诊断方法来解决这个问题。SMCE通过求解稀疏优化问题自动确定邻域的大小,将传统流形学习中邻域尺... 传统流形学习算法中邻域尺寸是固定的,在故障诊断中并不恰当。本文中提出了一种基于新型流形学习算法稀疏流形聚类与嵌入(SMCE)的机械故障诊断方法来解决这个问题。SMCE通过求解稀疏优化问题自动确定邻域的大小,将传统流形学习中邻域尺寸选择变为优化问题的惩罚系数选择,进而从高维非线性观测数据中提取流形结构。利用SMCE从轴承和齿轮振动信号中提取特征进行诊断,实验表明,所提方法可以较好的提取故障信号内在的几何结构,应用无监督的谱聚类和有监督的支持向量机进行诊断准确率均高于98%。 展开更多
关键词 稀疏流形嵌入 流形学习 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部