针对传统KNN算法K值固定问题,提出基于环形过滤器的K值自适应KNN算法(K-value Adaptive KNN Algorithm Based on Annular Filter,AAKNN),其核心思想是利用稀疏向量能够较好地表达数据之间的相似度信息来动态选择每个测试点的K个最近邻点...针对传统KNN算法K值固定问题,提出基于环形过滤器的K值自适应KNN算法(K-value Adaptive KNN Algorithm Based on Annular Filter,AAKNN),其核心思想是利用稀疏向量能够较好地表达数据之间的相似度信息来动态选择每个测试点的K个最近邻点,从而提高算法的准确率。该算法不仅能够根据不同测试点的实际情况来选择不同的K值,而且利用环形过滤器避免了内存占用过大的问题。最后通过6组公开数据集对所提出的AAKNN算法进行了实验验证。实验结果表明,AAKNN与CM-KNN算法相比较于其余四种算法在准确率上平均提高2%,其中AAKNN算法相比较CM-KNN算法可以平均减少79%的内存消耗。展开更多
融合离散小波变换和压缩感知的图像压缩方案很好避免了采用离散余弦变换和压缩感知时所带来的块效应,但当前基于单层离散小波变换的算法压缩比较低,基于多层离散小波变换的算法重构质量不佳。为了解决这些不足,根据离散小波变换系数的特...融合离散小波变换和压缩感知的图像压缩方案很好避免了采用离散余弦变换和压缩感知时所带来的块效应,但当前基于单层离散小波变换的算法压缩比较低,基于多层离散小波变换的算法重构质量不佳。为了解决这些不足,根据离散小波变换系数的特点,对现有基于多层离散小波变换的算法提出了改进。图像经小波变换后,保留图像最高层低频系数,高频系数的构造方式给予适当改进。实验结果表明,与现有算法相比,重构图像的峰值信噪比PSNR(Peak Signal to Noise Ratio)值得到2 dB~4 dB提高。展开更多
文摘针对传统KNN算法K值固定问题,提出基于环形过滤器的K值自适应KNN算法(K-value Adaptive KNN Algorithm Based on Annular Filter,AAKNN),其核心思想是利用稀疏向量能够较好地表达数据之间的相似度信息来动态选择每个测试点的K个最近邻点,从而提高算法的准确率。该算法不仅能够根据不同测试点的实际情况来选择不同的K值,而且利用环形过滤器避免了内存占用过大的问题。最后通过6组公开数据集对所提出的AAKNN算法进行了实验验证。实验结果表明,AAKNN与CM-KNN算法相比较于其余四种算法在准确率上平均提高2%,其中AAKNN算法相比较CM-KNN算法可以平均减少79%的内存消耗。
文摘融合离散小波变换和压缩感知的图像压缩方案很好避免了采用离散余弦变换和压缩感知时所带来的块效应,但当前基于单层离散小波变换的算法压缩比较低,基于多层离散小波变换的算法重构质量不佳。为了解决这些不足,根据离散小波变换系数的特点,对现有基于多层离散小波变换的算法提出了改进。图像经小波变换后,保留图像最高层低频系数,高频系数的构造方式给予适当改进。实验结果表明,与现有算法相比,重构图像的峰值信噪比PSNR(Peak Signal to Noise Ratio)值得到2 dB~4 dB提高。