针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on sha...针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on shared neighbors,SN-WLLE)算法,并用于滚动轴承故障诊断.该算法首先使用余弦距离划分样本邻域;其次计算样本邻域对相似度用以评估样本共享近邻信息,并结合样本的6种邻居分布修正局部结构挖掘,提高多共享近邻的k近邻重构准确性;接着从多流形的角度评估样本点与近邻点间的稀疏分布一致性,以获得样本的重要性指标,并在低维空间保持该信息,进而提取准确的鉴别特征;最后结合KNN分类器构建出完备的轴承故障诊断模型.采用凯斯西储大学轴承数据集和实验室测试平台轴承数据集,从可视化评估、定量聚类评估、故障识别精度评估及鲁棒性评估等方面进行分析.结果表明:SN-WLLE算法的F值保持在108以上水准,平均故障识别精度最低可达0.9734,不仅具有较好的类内紧致性与类间可分性,还对近邻参数k具有低敏感性.展开更多
A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requir...A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requirements.Because of the deleterious effects of physical impairments,there is a maximum transmission reach for optical signals before they have to be regenerated.Being expensive devices,regenerators are expected to be sparsely located and used in such a network,called a translucent optical network.In this paper,we consider the Grooming,Routing,and Wavelength Assignment(GRWA)problem so that the Quality of Transmission(QoT)for connections is satisfied,and the network-level performance metric of blocking probability is minimized.Cross-layer heuristics to effectively allocate the sparse regenerators in MLR networks are developed,and extensive simulation results are presented to demonstrate their effectiveness.展开更多
文摘针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on shared neighbors,SN-WLLE)算法,并用于滚动轴承故障诊断.该算法首先使用余弦距离划分样本邻域;其次计算样本邻域对相似度用以评估样本共享近邻信息,并结合样本的6种邻居分布修正局部结构挖掘,提高多共享近邻的k近邻重构准确性;接着从多流形的角度评估样本点与近邻点间的稀疏分布一致性,以获得样本的重要性指标,并在低维空间保持该信息,进而提取准确的鉴别特征;最后结合KNN分类器构建出完备的轴承故障诊断模型.采用凯斯西储大学轴承数据集和实验室测试平台轴承数据集,从可视化评估、定量聚类评估、故障识别精度评估及鲁棒性评估等方面进行分析.结果表明:SN-WLLE算法的F值保持在108以上水准,平均故障识别精度最低可达0.9734,不仅具有较好的类内紧致性与类间可分性,还对近邻参数k具有低敏感性.
基金supported in part by National Science Foundation (NSF) under Grants No. CNS-0915795 and No.CNS-0916890
文摘A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requirements.Because of the deleterious effects of physical impairments,there is a maximum transmission reach for optical signals before they have to be regenerated.Being expensive devices,regenerators are expected to be sparsely located and used in such a network,called a translucent optical network.In this paper,we consider the Grooming,Routing,and Wavelength Assignment(GRWA)problem so that the Quality of Transmission(QoT)for connections is satisfied,and the network-level performance metric of blocking probability is minimized.Cross-layer heuristics to effectively allocate the sparse regenerators in MLR networks are developed,and extensive simulation results are presented to demonstrate their effectiveness.