移动边缘计算(Mobile Edge Computing,MEC)通过在网络边缘部署服务器,提供计算和存储资源,可为用户提供超低时延和高带宽业务。网络功能虚拟化(Network Function Virtualization,NFV)与MEC技术相结合,可在MEC服务器上提供服务功能链(Ser...移动边缘计算(Mobile Edge Computing,MEC)通过在网络边缘部署服务器,提供计算和存储资源,可为用户提供超低时延和高带宽业务。网络功能虚拟化(Network Function Virtualization,NFV)与MEC技术相结合,可在MEC服务器上提供服务功能链(Service Function Chain,SFC),提升用户的业务体验。为了保证移动用户的服务质量,需要在用户跨基站移动时将SFC迁移到合适的边缘服务器上。主要以最小化用户服务的端到端时延和运行成本为目标,提出了MEC网络中具有资源容量约束的SFC迁移策略,以实现移动用户业务的无缝迁移。仿真结果表明,与现有方案相比,该策略具有更好的有效性和高效性。展开更多
针对移动边缘计算中用户移动性导致服务器间负载分布不均,用户服务质量(Quality of Service,QoS)下降的问题,提出了一种移动性感知下的分布式任务迁移方案。首先,以优化网络中性能最差的用户QoS为目标,建立了一个长期极大极小化公平性问...针对移动边缘计算中用户移动性导致服务器间负载分布不均,用户服务质量(Quality of Service,QoS)下降的问题,提出了一种移动性感知下的分布式任务迁移方案。首先,以优化网络中性能最差的用户QoS为目标,建立了一个长期极大极小化公平性问题(Max Min Fairness,MMF),利用李雅普诺夫(Lyapunov)优化将原问题转化解耦。然后,将其建模为去中心化部分可观测马尔可夫决策过程(Decentralized Partially Observable Markov Decision Process,Dec-POMDP),提出一种基于多智能体柔性演员-评论家(Soft Actor-Critic,SAC)的分布式任务迁移算法,将奖励函数解耦为节点奖励和用户个体奖励,分别基于节点负载均衡度和用户QoS施加奖励。仿真结果表明,相比于现有任务迁移方案,所提算法能够在保证用户QoS的前提下降低任务迁移率,保证系统负载均衡。展开更多
当物联网设备(Internet of Things Device,IoTD)面临随机到达且复杂度高的计算任务时,因自身计算资源和能力所限,无法进行实时高效的处理。为了应对此类问题,设计了一种两层无人机辅助的移动边缘计算(Mobile Edge Computing,MEC)模型。...当物联网设备(Internet of Things Device,IoTD)面临随机到达且复杂度高的计算任务时,因自身计算资源和能力所限,无法进行实时高效的处理。为了应对此类问题,设计了一种两层无人机辅助的移动边缘计算(Mobile Edge Computing,MEC)模型。在该模型中,考虑到IoTD处理随机计算任务时的局限性,引入多架配备MEC服务器的下层无人机和单架上层无人机进行协同处理。为了实现系统能耗最优化,提出了一种资源优化和多无人机位置部署方案,根据计算任务到达的随机性,应用李雅普诺夫优化方法将能耗最小化问题转化为一个确定性问题,应用差分进化(Differential Evolution,DE)算法进行多次变异、交叉和选择取得无人机的优化部署方案;采用深度确定性策略梯度(Depth Deterministic policy Gradient,DDPG)算法对带宽分配、计算资源分配、传输功率分配和任务卸载分配进行联合优化。实验结果表明,该算法相较于对比算法系统能耗降低35%,充分验证了其可行性和有效性。展开更多
软件定义网络(Software Defined Network,SDN)依靠着其集中控制、可编程性和数控分离等优点,能够有效解决无人机网络(Flying Ad Hoc Network,FANET)面临的任务拓扑高度变化、网络链路连接不稳定、网络安全防护脆弱以及应用程序的异构性...软件定义网络(Software Defined Network,SDN)依靠着其集中控制、可编程性和数控分离等优点,能够有效解决无人机网络(Flying Ad Hoc Network,FANET)面临的任务拓扑高度变化、网络链路连接不稳定、网络安全防护脆弱以及应用程序的异构性等问题,极大地提升FANET的灵活性和可靠性。针对SDN架构与FANET的结合问题,描述了SDN的体系架构,并以SDN控制器部署方式为关注点分类别概括了近几年软件定义无人机网络(Software-defined Flying Ad Hoc Network,SD-FANET)的研究进展,重点阐述了结合移动边缘计算(Mobile Edge Computing,MEC)的SD-FANET研究现状,最后指出了SD-FANET的应用场景和一些具体的未来研究方向。展开更多
为解决移动边缘计算中面向用户的服务功能链(Service Function Chain,SFC)部署成本开销过大、时延过长问题,提出了针对SFC的支出成本与时延联合自适应优化的部署策略。首先,在虚拟网络功能(Virtualized Network Function,VNF)节点选取阶...为解决移动边缘计算中面向用户的服务功能链(Service Function Chain,SFC)部署成本开销过大、时延过长问题,提出了针对SFC的支出成本与时延联合自适应优化的部署策略。首先,在虚拟网络功能(Virtualized Network Function,VNF)节点选取阶段,考虑路径损耗这一无线信道衰落问题,根据有线用户与无线用户的位置情况,选择当前最佳节点以降低SFC的响应时延。其次,在服务节点配置阶段,根据用户请求处理的数据内容的新鲜度记录,自适应动态增加和删减相应的缓存,利用资源感知算法在保证数据传递可靠性的同时,减少服务节点的配置个数,降低配置开销。最后,在SFC部署阶段,利用基于KSP(K-shortest Paths)的功耗感知算法确定最佳节点映射排序与通信链路,在减少通信链路重映射的同时还能保证部署的SFC的低成本与低时延。实验仿真结果表明,相比于已有方案,该方法能够有效降低部署成本与时延,并能对不同用户的SFC部署做到自适应优化,提高了SFC的部署成功率。展开更多
移动边缘计算(mobile edge computing,MEC)近年来成为解决无线体域网(wireless body area network,WBAN)计算资源匮乏的热门方法之一,但在现有的研究工作中,并没有将患者身边的计算资源充分利用起来,容易造成网络的拥堵。针对这种情况,...移动边缘计算(mobile edge computing,MEC)近年来成为解决无线体域网(wireless body area network,WBAN)计算资源匮乏的热门方法之一,但在现有的研究工作中,并没有将患者身边的计算资源充分利用起来,容易造成网络的拥堵。针对这种情况,提出了一种联合蜂窝、WiFi网络与设备到设备(device to device,D2D)通信的高效任务卸载方案,充分利用了WBAN应用场景中的多种计算资源,有效减少了蜂窝网络的负载,提高了系统的可靠性。设计了一种低复杂度的遗传算法,在同时考虑患者时延、能耗以及经济开销条件下,得到系统的最小卸载总成本。实验仿真结果表明,相比于随机卸载、蜂窝卸载、无WiFi卸载、无D2D卸载,该方案可以更有效降低系统总成本,为患者提供更高的服务质量。展开更多
针对在任务卸载时由于设备的移动而导致任务迁移这一问题,将任务卸载过程建模为马尔科夫决策过程,并通过优化资源分配和任务卸载策略,解决基于联合时延和能耗的损耗函数最小的优化问题。首先将问题转化为最小化损耗函数之和,并在决策前...针对在任务卸载时由于设备的移动而导致任务迁移这一问题,将任务卸载过程建模为马尔科夫决策过程,并通过优化资源分配和任务卸载策略,解决基于联合时延和能耗的损耗函数最小的优化问题。首先将问题转化为最小化损耗函数之和,并在决策前对每个任务的传输功率采用二分法进行优化,然后基于获得的传输功率提出一种QLBA(Q-learning Based Algorithm)来完成卸载决策。仿真结果证实所提方案优于传统算法。展开更多
文摘移动边缘计算(Mobile Edge Computing,MEC)通过在网络边缘部署服务器,提供计算和存储资源,可为用户提供超低时延和高带宽业务。网络功能虚拟化(Network Function Virtualization,NFV)与MEC技术相结合,可在MEC服务器上提供服务功能链(Service Function Chain,SFC),提升用户的业务体验。为了保证移动用户的服务质量,需要在用户跨基站移动时将SFC迁移到合适的边缘服务器上。主要以最小化用户服务的端到端时延和运行成本为目标,提出了MEC网络中具有资源容量约束的SFC迁移策略,以实现移动用户业务的无缝迁移。仿真结果表明,与现有方案相比,该策略具有更好的有效性和高效性。
文摘当物联网设备(Internet of Things Device,IoTD)面临随机到达且复杂度高的计算任务时,因自身计算资源和能力所限,无法进行实时高效的处理。为了应对此类问题,设计了一种两层无人机辅助的移动边缘计算(Mobile Edge Computing,MEC)模型。在该模型中,考虑到IoTD处理随机计算任务时的局限性,引入多架配备MEC服务器的下层无人机和单架上层无人机进行协同处理。为了实现系统能耗最优化,提出了一种资源优化和多无人机位置部署方案,根据计算任务到达的随机性,应用李雅普诺夫优化方法将能耗最小化问题转化为一个确定性问题,应用差分进化(Differential Evolution,DE)算法进行多次变异、交叉和选择取得无人机的优化部署方案;采用深度确定性策略梯度(Depth Deterministic policy Gradient,DDPG)算法对带宽分配、计算资源分配、传输功率分配和任务卸载分配进行联合优化。实验结果表明,该算法相较于对比算法系统能耗降低35%,充分验证了其可行性和有效性。
文摘软件定义网络(Software Defined Network,SDN)依靠着其集中控制、可编程性和数控分离等优点,能够有效解决无人机网络(Flying Ad Hoc Network,FANET)面临的任务拓扑高度变化、网络链路连接不稳定、网络安全防护脆弱以及应用程序的异构性等问题,极大地提升FANET的灵活性和可靠性。针对SDN架构与FANET的结合问题,描述了SDN的体系架构,并以SDN控制器部署方式为关注点分类别概括了近几年软件定义无人机网络(Software-defined Flying Ad Hoc Network,SD-FANET)的研究进展,重点阐述了结合移动边缘计算(Mobile Edge Computing,MEC)的SD-FANET研究现状,最后指出了SD-FANET的应用场景和一些具体的未来研究方向。
文摘移动边缘计算(mobile edge computing,MEC)近年来成为解决无线体域网(wireless body area network,WBAN)计算资源匮乏的热门方法之一,但在现有的研究工作中,并没有将患者身边的计算资源充分利用起来,容易造成网络的拥堵。针对这种情况,提出了一种联合蜂窝、WiFi网络与设备到设备(device to device,D2D)通信的高效任务卸载方案,充分利用了WBAN应用场景中的多种计算资源,有效减少了蜂窝网络的负载,提高了系统的可靠性。设计了一种低复杂度的遗传算法,在同时考虑患者时延、能耗以及经济开销条件下,得到系统的最小卸载总成本。实验仿真结果表明,相比于随机卸载、蜂窝卸载、无WiFi卸载、无D2D卸载,该方案可以更有效降低系统总成本,为患者提供更高的服务质量。
文摘针对在任务卸载时由于设备的移动而导致任务迁移这一问题,将任务卸载过程建模为马尔科夫决策过程,并通过优化资源分配和任务卸载策略,解决基于联合时延和能耗的损耗函数最小的优化问题。首先将问题转化为最小化损耗函数之和,并在决策前对每个任务的传输功率采用二分法进行优化,然后基于获得的传输功率提出一种QLBA(Q-learning Based Algorithm)来完成卸载决策。仿真结果证实所提方案优于传统算法。