期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于生成对抗网络的离心泵时序数据异常检测 被引量:1
1
作者 李思汉 黄倩 +2 位作者 付强 张鑫宇 李云鹏 《机电工程》 CAS 北大核心 2023年第12期1957-1964,共8页
针对离心泵数据采集的过程中存在异常数据的问题,对产生异常数据的原因、生成对抗网络的优化以及异常数据检测的方法等问题进行了研究,提出了一种基于生成对抗网络的离心泵时序数据异常检测方法(该方法可以优化生成对抗网络,解决梯度消... 针对离心泵数据采集的过程中存在异常数据的问题,对产生异常数据的原因、生成对抗网络的优化以及异常数据检测的方法等问题进行了研究,提出了一种基于生成对抗网络的离心泵时序数据异常检测方法(该方法可以优化生成对抗网络,解决梯度消失问题)。首先,使用长短期记忆神经网络(LSTM),建立了生成对抗网络(GAN)框架中的基础模型,增强了捕获数据分布的时间相关性;并采用Wasserstein距离方法,解决了梯度消失的问题;然后,搭建了离心泵异常数据检测试验台,对离心泵运行时的数据进行了采集,分析了造成异常数据的原因;最后,基于正常数据训练数据,生成了对抗网络的生成器和判别器,并利用重构损失与判别损失构建了检测阈值,对异常数据进行了检测。研究结果表明:GAN在离心泵数据异常检测中的表现皆优于孤立森林、自编码器(AE)、K-Means等算法;基于生成对抗网络的离心泵异常数据检测精确率可达到89.5%,能够有效检测出异常数据,可达到优化数据库和提高旋转机械故障诊断精度的目的。该研究结果可以为离心泵的异常数据检测提供参考。 展开更多
关键词 离心泵序数 生成对抗网络 异常检测 无监督学习 长短期记忆网络 Wasserstein距离方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部