为降低柴油机颗粒物排放,探讨了柴油机燃用柴油/碳酸二甲酯混合燃料燃烧颗粒微观结构和分形特征的变化规律.采用扫描电镜、透射电镜和SAXS(同步辐射小角X射线散射)相结合的方法,针对DMC(碳酸二甲酯)添加量(以w计)对柴油机燃烧颗粒微观...为降低柴油机颗粒物排放,探讨了柴油机燃用柴油/碳酸二甲酯混合燃料燃烧颗粒微观结构和分形特征的变化规律.采用扫描电镜、透射电镜和SAXS(同步辐射小角X射线散射)相结合的方法,针对DMC(碳酸二甲酯)添加量(以w计)对柴油机燃烧颗粒微观结构和分形特征参数的影响规律进行了研究.结果表明:与柴油燃烧颗粒相比,D10〔w(DMC)为10%〕、D20〔w(DMC)为10%〕燃烧颗粒的碳粒子平均层面间距分别增加了5.3%、15.1%,弯曲度平均值分别增加了4.0%和10.3%,表明燃烧颗粒的氧化活性增加;与柴油相比,D10、D20燃烧颗粒的质量分形维数分别增加了0.44和0.52,下限均升高了0.2,SAXS与电镜图像对燃烧颗粒的质量分形维数的分析结果相一致,即质量分形维数随DMC添加量的增加而升高,表明燃烧颗粒的团聚程度提高;与柴油燃烧颗粒相比,D10、D20燃烧颗粒表面分形维数的下限分别升高了0.1和0.2,表明其燃烧颗粒表面的粗糙程度和不规则程度提高;与柴油燃烧颗粒相比,D10、D20燃烧颗粒的活化能分别降低了3.9和7.9 k J/mol,表明燃烧颗粒的氧化活性随着DMC添加量的增加而增强,验证了燃烧颗粒微观尺寸结构和分形特征的研究结果.研究显示,柴油中添加DMC能够提高燃烧颗粒的氧化活性,燃烧颗粒的氧化活性越强,其在后处理过程中就越易被氧化,有助于降低柴油机的颗粒物排放.展开更多
在四缸直列四冲程增压直喷汽油机上,研究了添加体积分数为10%的碳酸二甲酯(DMC)对燃用烷基化汽油在典型工况下发动机性能的影响及其燃烧过程原理。结果表明:在所有工况下,添加DMC后燃油消耗率均有明显增加,增幅最高可达20.53%,有效热效...在四缸直列四冲程增压直喷汽油机上,研究了添加体积分数为10%的碳酸二甲酯(DMC)对燃用烷基化汽油在典型工况下发动机性能的影响及其燃烧过程原理。结果表明:在所有工况下,添加DMC后燃油消耗率均有明显增加,增幅最高可达20.53%,有效热效率变化不明显。在外特性工况下,添加DMC对汽油机动力性影响不大,均不超过3%;在稳态工况下,DMC的加入降低了燃料的总碳氢化合物(THC)和氮氧化物(NO x )排放,碳氢化合物(HC)的排放最大降幅为13%,NO x 排放最大降幅为32%;在低转速工况下,DMC的添加可引起总颗粒物排放增加,最大增幅为103%,其中核态颗粒物增加是主要因素,最大增幅为113%。燃烧过程分析表明,加入DMC会造成燃烧始点最多推迟1.24° CA,燃烧重心最多推移1.98° CA,燃烧持续期最大延长2.32° CA,从而引起定容性下降,热效率降低,后燃量增加,颗粒物升高,燃烧温度下降,NO x 排放降低。展开更多
文摘为降低柴油机颗粒物排放,探讨了柴油机燃用柴油/碳酸二甲酯混合燃料燃烧颗粒微观结构和分形特征的变化规律.采用扫描电镜、透射电镜和SAXS(同步辐射小角X射线散射)相结合的方法,针对DMC(碳酸二甲酯)添加量(以w计)对柴油机燃烧颗粒微观结构和分形特征参数的影响规律进行了研究.结果表明:与柴油燃烧颗粒相比,D10〔w(DMC)为10%〕、D20〔w(DMC)为10%〕燃烧颗粒的碳粒子平均层面间距分别增加了5.3%、15.1%,弯曲度平均值分别增加了4.0%和10.3%,表明燃烧颗粒的氧化活性增加;与柴油相比,D10、D20燃烧颗粒的质量分形维数分别增加了0.44和0.52,下限均升高了0.2,SAXS与电镜图像对燃烧颗粒的质量分形维数的分析结果相一致,即质量分形维数随DMC添加量的增加而升高,表明燃烧颗粒的团聚程度提高;与柴油燃烧颗粒相比,D10、D20燃烧颗粒表面分形维数的下限分别升高了0.1和0.2,表明其燃烧颗粒表面的粗糙程度和不规则程度提高;与柴油燃烧颗粒相比,D10、D20燃烧颗粒的活化能分别降低了3.9和7.9 k J/mol,表明燃烧颗粒的氧化活性随着DMC添加量的增加而增强,验证了燃烧颗粒微观尺寸结构和分形特征的研究结果.研究显示,柴油中添加DMC能够提高燃烧颗粒的氧化活性,燃烧颗粒的氧化活性越强,其在后处理过程中就越易被氧化,有助于降低柴油机的颗粒物排放.
文摘在四缸直列四冲程增压直喷汽油机上,研究了添加体积分数为10%的碳酸二甲酯(DMC)对燃用烷基化汽油在典型工况下发动机性能的影响及其燃烧过程原理。结果表明:在所有工况下,添加DMC后燃油消耗率均有明显增加,增幅最高可达20.53%,有效热效率变化不明显。在外特性工况下,添加DMC对汽油机动力性影响不大,均不超过3%;在稳态工况下,DMC的加入降低了燃料的总碳氢化合物(THC)和氮氧化物(NO x )排放,碳氢化合物(HC)的排放最大降幅为13%,NO x 排放最大降幅为32%;在低转速工况下,DMC的添加可引起总颗粒物排放增加,最大增幅为103%,其中核态颗粒物增加是主要因素,最大增幅为113%。燃烧过程分析表明,加入DMC会造成燃烧始点最多推迟1.24° CA,燃烧重心最多推移1.98° CA,燃烧持续期最大延长2.32° CA,从而引起定容性下降,热效率降低,后燃量增加,颗粒物升高,燃烧温度下降,NO x 排放降低。