Microwave sintering is being developed as a novel technique for the preparation of dense structural ceramics,but the mature theory has not been established due to the technical difficulties.The synchrotron radiation X...Microwave sintering is being developed as a novel technique for the preparation of dense structural ceramics,but the mature theory has not been established due to the technical difficulties.The synchrotron radiation X-ray computed tomography(SR-CT) technique was introduced for the first time into the study of microwave sintering to in-situ observe the microstructure evolution of silicon carbide(SiC) material in this paper.By applying the SR-CT technique,the reconstructed 2D and 3D images of the specimen were obtained and the double logarithm curve of mean neck size and time(Ln(x)-Ln(t)) were obtained from these reconstructed images.Various sintering phenomena including sintering neck growth during microwave treatment were observed from the reconstructed images.Furthermore,the differences in microstructure evolution and sintering kinetics between microwave and conventional sintering were analyzed based on the reconstructed images and the Ln(x)-Ln(t) curve.1) The sharp surface of grains near the contact region distinctly grew blunt and the sintering neck growth between these grains were obviously observed at the early stage.Besides,the larger particles grew faster than smaller ones.The main reason for these phenomena may be the micro-focusing effect of electric fields.2) During each of the three sintering stages,the sintering kinetics curve of double logarithm relationship between mean neck size and time shows a good linear relationship,but at the middle stage the slope of the curve increases dramatically,which is quite larger than conventional sintering.The preliminary interpretation for these extraordinary phenomena has been discussed in details.展开更多
Nano-SiC powders doped by B were synthesized through the carbothermal reduction of xerogels containing the tributyl borate. The results show that the 3C-SiC with minor phase of 6H-SiC is generated at 1 700 ℃,and that...Nano-SiC powders doped by B were synthesized through the carbothermal reduction of xerogels containing the tributyl borate. The results show that the 3C-SiC with minor phase of 6H-SiC is generated at 1 700 ℃,and that there are not the characteristic peaks of any boride in the XRD patterns,which indicates that the boron is available only on the crystallization of 3C-SiC. The Raman spectra of the samples also show the characteristic bands of 3C-and 6H-SiC at 788 and 965 cm-1. But the bands at 1 345 and 1 590 cm-1 are characteristic peaks of amorphous carbon materials. The intensities of peaks at 788 and 965 cm-1 increase with B content in Raman spectra,which also shift to higher wavenumber with the increasing B. The microstructure of SiC powder is composed of agglomerated particles with diameters ranging from 30 to 100 nm. The results of dielectric property show that the sample with 0.005 B has the largest values in ε′ and ε″ among the four samples due to the existence of the intrinsic defects. But the absence of the relaxation polarization leads to low values of all the samples.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 10902108, 10732080, 10872190)the National Basic Research Program of China ("973" Project) (Grant No 2007CB936800)
文摘Microwave sintering is being developed as a novel technique for the preparation of dense structural ceramics,but the mature theory has not been established due to the technical difficulties.The synchrotron radiation X-ray computed tomography(SR-CT) technique was introduced for the first time into the study of microwave sintering to in-situ observe the microstructure evolution of silicon carbide(SiC) material in this paper.By applying the SR-CT technique,the reconstructed 2D and 3D images of the specimen were obtained and the double logarithm curve of mean neck size and time(Ln(x)-Ln(t)) were obtained from these reconstructed images.Various sintering phenomena including sintering neck growth during microwave treatment were observed from the reconstructed images.Furthermore,the differences in microstructure evolution and sintering kinetics between microwave and conventional sintering were analyzed based on the reconstructed images and the Ln(x)-Ln(t) curve.1) The sharp surface of grains near the contact region distinctly grew blunt and the sintering neck growth between these grains were obviously observed at the early stage.Besides,the larger particles grew faster than smaller ones.The main reason for these phenomena may be the micro-focusing effect of electric fields.2) During each of the three sintering stages,the sintering kinetics curve of double logarithm relationship between mean neck size and time shows a good linear relationship,but at the middle stage the slope of the curve increases dramatically,which is quite larger than conventional sintering.The preliminary interpretation for these extraordinary phenomena has been discussed in details.
基金Project(50572090) supported by the National Natural Science Foundation of China
文摘Nano-SiC powders doped by B were synthesized through the carbothermal reduction of xerogels containing the tributyl borate. The results show that the 3C-SiC with minor phase of 6H-SiC is generated at 1 700 ℃,and that there are not the characteristic peaks of any boride in the XRD patterns,which indicates that the boron is available only on the crystallization of 3C-SiC. The Raman spectra of the samples also show the characteristic bands of 3C-and 6H-SiC at 788 and 965 cm-1. But the bands at 1 345 and 1 590 cm-1 are characteristic peaks of amorphous carbon materials. The intensities of peaks at 788 and 965 cm-1 increase with B content in Raman spectra,which also shift to higher wavenumber with the increasing B. The microstructure of SiC powder is composed of agglomerated particles with diameters ranging from 30 to 100 nm. The results of dielectric property show that the sample with 0.005 B has the largest values in ε′ and ε″ among the four samples due to the existence of the intrinsic defects. But the absence of the relaxation polarization leads to low values of all the samples.