The oxidation characteristics of boron particles, boron-A with the diameter of 2.545 μm and boron-B with the diameter of 10.638 μm, at low temperature(1500 K) have been investigated by thermogravimetry(TG) coupl...The oxidation characteristics of boron particles, boron-A with the diameter of 2.545 μm and boron-B with the diameter of 10.638 μm, at low temperature(1500 K) have been investigated by thermogravimetry(TG) coupled with simultaneous differential scanning calorimetry(DSC), infrared and mass spectra. A rapid oxidation stage of boron particles, followed by a slow oxidation stage of sintered particles, is found from the TG and DSC curves. The onset temperatures of the oxidation process of boron-A particles are in the range of 806–889 K, which are at least 105 K lower than those of boron-B at the same condition. As the partial pressure of oxygen increases from 5% to 35%, the onset temperature of boron-A or boron-B particles decreases. However, when the partial pressure of oxygen is above 35%, the onset temperature becomes constant, implying a saturation effect of oxygen on the reaction rate. It indicates that the chemical adsorption of oxygen, i.e. chemical reaction, on the particle surface is the rate-limited step at the beginning of the rapid oxidation stage. Therefore, the first-order chemical reaction model is used to simulate the oxidation of boron particles, even that of the sinter. The average activation energies of the particles are 291.3 kJ/mol for boron-A and 338.4 k J/mol for boron-B. While the average activation energies of the sintered particles are 36.35 k J/mol for boron-A and 31.87 kJ/mol for boron-B. The pre-exponential factor of the particles is -10^4, while that of the sinter is 10^-1. The oxidation rate constant of boron is qualitatively mainly affected by the specific surface of the sample and the thickness of the oxide layer.展开更多
针对硼粒子在热空气中的燃烧,以Mohan G和Williams F A提出的燃烧模型为基础,对较大粒径(d>35μm)采用扩散燃烧火焰模型,对较小粒径(d<35μm)采用扩散和化学动力学控制模型,应用数学分析方法,研究了硼粒子燃烧规律,得出了热空气...针对硼粒子在热空气中的燃烧,以Mohan G和Williams F A提出的燃烧模型为基础,对较大粒径(d>35μm)采用扩散燃烧火焰模型,对较小粒径(d<35μm)采用扩散和化学动力学控制模型,应用数学分析方法,研究了硼粒子燃烧规律,得出了热空气中硼粒子半径随时间的变化规律,分析了压强、温度等参数对硼粒子燃烧的影响,计算结果和试验数据一致性较好。计算结果可用于估算固冲发动机二次燃烧室长度。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51206089)Postdoctoral Science Foundation of China(Grant No.2012M510438)the National Basic Research Program of China("973"Project)(Grant No.2013CB228502)
文摘The oxidation characteristics of boron particles, boron-A with the diameter of 2.545 μm and boron-B with the diameter of 10.638 μm, at low temperature(1500 K) have been investigated by thermogravimetry(TG) coupled with simultaneous differential scanning calorimetry(DSC), infrared and mass spectra. A rapid oxidation stage of boron particles, followed by a slow oxidation stage of sintered particles, is found from the TG and DSC curves. The onset temperatures of the oxidation process of boron-A particles are in the range of 806–889 K, which are at least 105 K lower than those of boron-B at the same condition. As the partial pressure of oxygen increases from 5% to 35%, the onset temperature of boron-A or boron-B particles decreases. However, when the partial pressure of oxygen is above 35%, the onset temperature becomes constant, implying a saturation effect of oxygen on the reaction rate. It indicates that the chemical adsorption of oxygen, i.e. chemical reaction, on the particle surface is the rate-limited step at the beginning of the rapid oxidation stage. Therefore, the first-order chemical reaction model is used to simulate the oxidation of boron particles, even that of the sinter. The average activation energies of the particles are 291.3 kJ/mol for boron-A and 338.4 k J/mol for boron-B. While the average activation energies of the sintered particles are 36.35 k J/mol for boron-A and 31.87 kJ/mol for boron-B. The pre-exponential factor of the particles is -10^4, while that of the sinter is 10^-1. The oxidation rate constant of boron is qualitatively mainly affected by the specific surface of the sample and the thickness of the oxide layer.
文摘针对硼粒子在热空气中的燃烧,以Mohan G和Williams F A提出的燃烧模型为基础,对较大粒径(d>35μm)采用扩散燃烧火焰模型,对较小粒径(d<35μm)采用扩散和化学动力学控制模型,应用数学分析方法,研究了硼粒子燃烧规律,得出了热空气中硼粒子半径随时间的变化规律,分析了压强、温度等参数对硼粒子燃烧的影响,计算结果和试验数据一致性较好。计算结果可用于估算固冲发动机二次燃烧室长度。