AIM:Тo examine the effects of nitroglycerine on portal vein haemodynamics and oxidative stress in patients with portal hypertension.METHODS:Thirty healthy controls and 39 patients with clinically verified portal hype...AIM:Тo examine the effects of nitroglycerine on portal vein haemodynamics and oxidative stress in patients with portal hypertension.METHODS:Thirty healthy controls and 39 patients with clinically verified portal hypertension and increasedvascular resistance participated in the study.Liver di-ameters,portal diameters and portal flow velocities were recorded using color flow imaging/pulsed Doppler detection.Cross-section area,portal flow and index of vascular resistance were calculated.In collected blood samples,superoxide anion radical (O 2-),hydrogen per-oxide (H 2 O 2),index of lipid peroxidation (measured as TBARS) and nitric oxide (NO) as a marker of endothelial response (measured as nitrite-NO 2-) were determined.Time-dependent analysis was performed at basal state and in 10th and 15th min after nitroglycerine (sublingual 0.5 mg) administration.RESULTS:Oxidative stress parameters changed sig-nificantly during the study.H 2 O 2 decreased at the end of study,probably via O 2-mediated disassembling in Haber Weiss and Fenton reaction;O 2-increased signifi-cantly probably due to increased diameter and tension and decreased shear rate level.Consequently O 2-and H 2 O 2 degradation products,like hydroxyl radical,initi-ated lipid peroxidation.Increased blood flow was to some extent lower in patients than in controls due to double paradoxes,flow velocity decreased,shear rate decreased significantly indicating non Newtonian char-acteristics of portal blood flow.CONCLUSION:This pilot study could be a starting point for further investigation and possible implemen-tation of some antioxidants in the treatment of portal hypertension.展开更多
采用密度泛函理论(DFT)在B3LYP/6-31+G(d,p)水平上模拟计算了NO_2对硝化甘油(NG)催化分解的反应机理。通过与O—NO_2均裂、HNO_2分子内消去反应对比发现,NO_2分子对NG分解反应有显著的催化效应;NG的催化分解途径有α-H夺氢催化和β-H夺...采用密度泛函理论(DFT)在B3LYP/6-31+G(d,p)水平上模拟计算了NO_2对硝化甘油(NG)催化分解的反应机理。通过与O—NO_2均裂、HNO_2分子内消去反应对比发现,NO_2分子对NG分解反应有显著的催化效应;NG的催化分解途径有α-H夺氢催化和β-H夺氢催化,计算得出2种途径的反应能垒分别为105.337 k J/mol和124.381 k J/mol,说明α-H夺氢催化更容易发生。展开更多
基金Supported by The Grant from the Ministry of Science and Technical Development of the Republic of Serbia,No.175043
文摘AIM:Тo examine the effects of nitroglycerine on portal vein haemodynamics and oxidative stress in patients with portal hypertension.METHODS:Thirty healthy controls and 39 patients with clinically verified portal hypertension and increasedvascular resistance participated in the study.Liver di-ameters,portal diameters and portal flow velocities were recorded using color flow imaging/pulsed Doppler detection.Cross-section area,portal flow and index of vascular resistance were calculated.In collected blood samples,superoxide anion radical (O 2-),hydrogen per-oxide (H 2 O 2),index of lipid peroxidation (measured as TBARS) and nitric oxide (NO) as a marker of endothelial response (measured as nitrite-NO 2-) were determined.Time-dependent analysis was performed at basal state and in 10th and 15th min after nitroglycerine (sublingual 0.5 mg) administration.RESULTS:Oxidative stress parameters changed sig-nificantly during the study.H 2 O 2 decreased at the end of study,probably via O 2-mediated disassembling in Haber Weiss and Fenton reaction;O 2-increased signifi-cantly probably due to increased diameter and tension and decreased shear rate level.Consequently O 2-and H 2 O 2 degradation products,like hydroxyl radical,initi-ated lipid peroxidation.Increased blood flow was to some extent lower in patients than in controls due to double paradoxes,flow velocity decreased,shear rate decreased significantly indicating non Newtonian char-acteristics of portal blood flow.CONCLUSION:This pilot study could be a starting point for further investigation and possible implemen-tation of some antioxidants in the treatment of portal hypertension.
文摘采用密度泛函理论(DFT)在B3LYP/6-31+G(d,p)水平上模拟计算了NO_2对硝化甘油(NG)催化分解的反应机理。通过与O—NO_2均裂、HNO_2分子内消去反应对比发现,NO_2分子对NG分解反应有显著的催化效应;NG的催化分解途径有α-H夺氢催化和β-H夺氢催化,计算得出2种途径的反应能垒分别为105.337 k J/mol和124.381 k J/mol,说明α-H夺氢催化更容易发生。