Silicon carbide (SiC) is highly wear resistant with good mechanical properties, including high temperature strength, excellent chemical resistance, and high thermal conductivity and thermal shock resistance. SiC molds...Silicon carbide (SiC) is highly wear resistant with good mechanical properties, including high temperature strength, excellent chemical resistance, and high thermal conductivity and thermal shock resistance. SiC molds, which can be produced with diverse microstructural features, are now widely used in glass molding owing to their excellent characteristics, and also have potential applicability in IT industries. SiC molds are traditionally fabricated by silicon micromachining or dicing. The fabrication cost of silicon micromachining is very high, however, because several expensive masks are needed. Furthermore, the fabrication time is very long. Meanwhile, it is difficult to make micro-patterned molds with arbitrary shapes using dicing saws. Abrasive water jet (AWJ) is widely applied to cut and drill very brittle, soft and fibrous materials. It offers high energy density, the absence of a heat affected zone(HAZ), high performance, and an environment friendly process. In spite of these advantages, micro-hole drilling via conventional AWJ processing suffers from notable shortcomings. We proposed a new abrasive supplying method of AWJ. The proposed method reduces frosting phenomena, and provides micro-machining of AWJ. The characteristics of a hole machined was investigated by the proposed AWJ process according to the ratio of water and abrasives. With the optimal experimental conditions, 3×3 array SiC molds with the diameter of 700 μm and depth of 900 μm were successfully manufactured.展开更多
基金supported by a grant-in-aid for the National Core Research Center Program from the Ministry of Education Science & Technologythe Korea Science & Engineering Foundation (No.R15-2006-022-01001)
文摘Silicon carbide (SiC) is highly wear resistant with good mechanical properties, including high temperature strength, excellent chemical resistance, and high thermal conductivity and thermal shock resistance. SiC molds, which can be produced with diverse microstructural features, are now widely used in glass molding owing to their excellent characteristics, and also have potential applicability in IT industries. SiC molds are traditionally fabricated by silicon micromachining or dicing. The fabrication cost of silicon micromachining is very high, however, because several expensive masks are needed. Furthermore, the fabrication time is very long. Meanwhile, it is difficult to make micro-patterned molds with arbitrary shapes using dicing saws. Abrasive water jet (AWJ) is widely applied to cut and drill very brittle, soft and fibrous materials. It offers high energy density, the absence of a heat affected zone(HAZ), high performance, and an environment friendly process. In spite of these advantages, micro-hole drilling via conventional AWJ processing suffers from notable shortcomings. We proposed a new abrasive supplying method of AWJ. The proposed method reduces frosting phenomena, and provides micro-machining of AWJ. The characteristics of a hole machined was investigated by the proposed AWJ process according to the ratio of water and abrasives. With the optimal experimental conditions, 3×3 array SiC molds with the diameter of 700 μm and depth of 900 μm were successfully manufactured.
基金Supported by the National Natural Science Foundation of China(Grant No.60806037)the National Hi-Tech Research and Development Programof China(863 Program) (Grant No .2006AA04Z353)The Ph.D.Programs Foundation of Ministry of Education of China (Grant No.20070213057)