A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage ma...A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil.展开更多
通过对山西太岳山油松人工林进行模拟氮沉降实验,探究土壤呼吸对模拟氮沉降刺激的短期响应动态。2015年7—8月,分3次分别对同一样地进行模拟氮沉降处理,水平皆为100 kg hm^(-2)a^(-1),同时采用LI-COR8150土壤碳通量自动观测系统全天候...通过对山西太岳山油松人工林进行模拟氮沉降实验,探究土壤呼吸对模拟氮沉降刺激的短期响应动态。2015年7—8月,分3次分别对同一样地进行模拟氮沉降处理,水平皆为100 kg hm^(-2)a^(-1),同时采用LI-COR8150土壤碳通量自动观测系统全天候连续监测土壤呼吸动态,探究土壤施氮前后呼吸速率的动态变化以及呼吸速率与土壤温度和湿度的关联。结果表明:3次氮沉降处理均呈现出相同规律,土壤呼吸值在施氮后1 d内达到最大值,随即下降,在施氮后第3天土壤呼吸趋于稳定;第一、二次氮沉降处理3 d后土壤呼吸恢复到处理前的状态,并未表现出显著差异(P>0.05)。第三次氮沉降处理后土壤呼吸并未恢复到施氮前的状态,土壤呼吸均值由1.99μmol m^(-2)s^(-1)显著上升到3.39μmol m^(-2)s^(-1)(P<0.05)。这表明,氮处理对土壤呼吸产生了持续效应。施氮后土壤呼吸与土壤温度呈极显著(P<0.001)指数相关(R_s=ae^(bT)),随着时间的推移,施氮处理解释土壤呼吸的相对贡献值由60%—69%下降到14%—59%。施氮提高了土壤温度敏感系数Q_(10)值;土壤温度和湿度(R_s=ae^(bT)W^c)能更好的解释土壤呼吸变化,解释率达到49%—91%。在全球变化的背景下,研究模拟氮沉降对土壤呼吸、Q_(10)的影响,可以对进一步模拟、预测全球暖温带地区森林碳循环和碳储量提供理论基础。展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.40271108 and 40471125).
文摘A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil.