期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
变时间尺度城轨客流的本征模量分解及组合深度学习预测 被引量:1
1
作者 朱广宇 孙歆霓 +3 位作者 杨荣正 刘康琳 魏运 吴波 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4421-4430,共10页
城市轨道交通的不同运营状态,通常对应着客流时间序列中不同的本征模态分量(IMF)及时间尺度特征。基于自适应噪声的完全总体经验模态分解(CEEMDAN)算法和双向长短期记忆(BiLSTM)网络,该文构建了地铁短时客流时间序列的组合深度学习预测... 城市轨道交通的不同运营状态,通常对应着客流时间序列中不同的本征模态分量(IMF)及时间尺度特征。基于自适应噪声的完全总体经验模态分解(CEEMDAN)算法和双向长短期记忆(BiLSTM)网络,该文构建了地铁短时客流时间序列的组合深度学习预测模型。具体包括:基于CEEMDAN算法实现了客流时间序列的模态分解。分别使用样本熵和层次聚类对IMF分量进行复杂性和相似度分析,并在此基础上完成IMF分量的分类合并与重构;使用Optuna框架中的树形Parzen优化器(TPE)对模型的超参数进行优化,构建CEEMDAN-TPE-BiLSTM组合预测模型。采用实际数据对该文模型进行验证,结果表明,对于特定特征的客流时间序列数据,该文模型的精确性、有效性指标均达到最优。 展开更多
关键词 城市轨道交通 短时客流时间序列 自适应噪声的完全总体经验模态分解 双向长短期记忆 组合预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部