期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
乘法半群为正规纯整群的半环 被引量:5
1
作者 潘秀娟 邵勇 田俊华 《纯粹数学与应用数学》 CSCD 北大核心 2005年第1期76-79,90,共5页
乘法半群为正规纯整群[矩形群]的半环类记为ONBG(ReG).本文主要研究了ONBG中半环的一些性质和它的坚固框架结构.
关键词 矩形 正规纯整 半环 坚固框架
下载PDF
乘法半群为矩形群的半环 被引量:5
2
作者 邵勇 张娟娟 王鑫 《宁夏大学学报(自然科学版)》 CAS 北大核心 2005年第2期107-109,共3页
研究了加法半群为半格、乘法半群为矩形群的半环.从半环的子集出发构造偏序关系,得到了半环的乘法半群上的Green-H关系.H是半环同余的一个充分条件,即如果半环的加法半群上的自然偏序与所构造的乘法半群上的偏序相等,则.H是半环同余,并... 研究了加法半群为半格、乘法半群为矩形群的半环.从半环的子集出发构造偏序关系,得到了半环的乘法半群上的Green-H关系.H是半环同余的一个充分条件,即如果半环的加法半群上的自然偏序与所构造的乘法半群上的偏序相等,则.H是半环同余,并给出了.H为半环同余的等价命题. 展开更多
关键词 半格 半环 矩形 偏序 同余
下载PDF
有限全变换半群变种具有某种性质的极大子半群 被引量:6
3
作者 金久林 游泰杰 徐波 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第3期549-555,共7页
设X是一个非空有限集合,且X=n,TX是X上的全变换半群.取a∈TX,在TX上定义运算*a:对任意的x,y∈TX,有x*ay=xay.易见TX对运算*a构成一个半群,称为有限全变换半群的变种,记作T_X^a.考虑T_X^a及其最大正则子半群Reg(T_X^a),给出T_X^a的极大... 设X是一个非空有限集合,且X=n,TX是X上的全变换半群.取a∈TX,在TX上定义运算*a:对任意的x,y∈TX,有x*ay=xay.易见TX对运算*a构成一个半群,称为有限全变换半群的变种,记作T_X^a.考虑T_X^a及其最大正则子半群Reg(T_X^a),给出T_X^a的极大子半群及Reg(T_X^a)的极大正则子半群的结构与完全分类. 展开更多
关键词 变换半 变种 极大正则子半 矩形
下载PDF
正则半群上的矩形群同余 被引量:3
4
作者 谭香 李刚 张玉芬 《纯粹数学与应用数学》 CSCD 2002年第2期161-164,共4页
文 [1 ]中 Petrich M定义了同余的核与迹 ,用它们描述了逆半群上的同余 ,Gomes在文 [2 ]中定义了同余的核与超迹并描述了正则半群上的 R-幂单 ( R- unipo-tent)同余 ,本文利用同余的核与超迹描述正则半群上的另一类重要同余 ,即矩形群同... 文 [1 ]中 Petrich M定义了同余的核与迹 ,用它们描述了逆半群上的同余 ,Gomes在文 [2 ]中定义了同余的核与超迹并描述了正则半群上的 R-幂单 ( R- unipo-tent)同余 ,本文利用同余的核与超迹描述正则半群上的另一类重要同余 ,即矩形群同余 . 展开更多
关键词 矩形 矩形同余对 逆半 正则半
下载PDF
加法半群为正规纯整群的半环 被引量:3
5
作者 王亚芹 《纯粹数学与应用数学》 CSCD 北大核心 2007年第1期66-70,共5页
加法半群为正规纯整群的半环类记为+ONBG,本文主要研究了+ONBG中半环的一些性质和次直积分解.
关键词 正规纯整 矩形 半环
下载PDF
矩形半环的分配格
6
作者 王斌 邵勇 《纺织高校基础科学学报》 CAS 2010年第4期494-497,共4页
借助半群的理论及观点引入并研究了加法半群为矩形群的半环及加法半群为纯正群的半环,即纯正半环和矩形半环.并通过对矩形半环及纯正半环的结构和性质的分析与研究,给出了这两类半环的若干性质,从而给出了矩形半环的分配格的定义.最后... 借助半群的理论及观点引入并研究了加法半群为矩形群的半环及加法半群为纯正群的半环,即纯正半环和矩形半环.并通过对矩形半环及纯正半环的结构和性质的分析与研究,给出了这两类半环的若干性质,从而给出了矩形半环的分配格的定义.最后研究了矩形半环的分配格与坚固分配格,即对这类半环坚固框架的刻画,得到了一些有趣的新结果. 展开更多
关键词 纯正半环 纯正 矩形半环 矩形 分配格 Mal′cev积 同余
下载PDF
关于* -矩形群的刻划 被引量:1
7
作者 董星 徐法升 《山东师范大学学报(自然科学版)》 CAS 2006年第1期29-30,共2页
给出了*-完全单半群和E-*-完全单半群的定义,把矩形群的定义广义化,给出了*-矩形群的定义.证明了*-矩形群与E-*-完全单半群等价.
关键词 *-完全单半 E-*-完全单半 *-矩形
下载PDF
矩形拟正则半群及矩形群的半直积和圈积
8
作者 张爱平 李刚 +1 位作者 张玉芬 陈秀梅 《纯粹数学与应用数学》 CSCD 北大核心 2005年第1期46-49,共4页
给出了两个半群的半直积和圈积为矩形拟正则半群和矩形群的充要条件.
关键词 矩形 矩形拟正则半 半直积 圈积
下载PDF
具有Clifford断面的纯正半群(英文)
9
作者 李勇华 《数学杂志》 CSCD 北大核心 2005年第6期618-624,共7页
本文研究有Clifford断面的纯正半群.为了获得主要的结构定理,证明了纯正半群有群断面当且仅当它是矩形群;利用半格和矩形带,建立了有Clifford断面的纯正半群的结构.
关键词 纯正半 断面 Clifford断面 矩形
下载PDF
矩形群的强正则*断面
10
作者 张丰硕 《云南民族大学学报(自然科学版)》 CAS 2005年第4期299-300,共2页
正则*断面是研究半群结构的一个重要手段,强正则*断面是正则*断面的加强.现通过研究矩形群的强正则*断面.利用已知强正则*断面的结构定理,给出了矩形群的强正则*断面的结构刻画和同构定理.
关键词 矩形 *半 正则*断面 强正则*断面
下载PDF
纯正群并的结构
11
作者 孟祥芹 宋光天 《数学进展》 CSCD 北大核心 2012年第1期7-15,共9页
本文主要利用带B=(Y;B_α),Clifford半群G=[Y;G_α,θ_(a,β)和对于α∈Y,群同态σ_α:G_a→Aut(αBα)来构造纯正群并.
关键词 纯正 CLIFFORD半 矩形
原文传递
乘法半群为矩形群的半环的性质
12
作者 冯小琴 薛等红 《长春大学学报》 2008年第10期14-16,共3页
研究了加法半群为半格、乘法半群为矩形群的半环。从半环的子集出发构造偏序关系,得到了半环的乘法半群上的H关系是半环同余的一个刻划。即如果半环的乘法幂等元集合是单演双半格,且加法半群上的自然偏序和所构造的乘法半群上的偏序相等... 研究了加法半群为半格、乘法半群为矩形群的半环。从半环的子集出发构造偏序关系,得到了半环的乘法半群上的H关系是半环同余的一个刻划。即如果半环的乘法幂等元集合是单演双半格,且加法半群上的自然偏序和所构造的乘法半群上的偏序相等,则H设半环同余,并给出了H是半环同余的等价命题。最后,证明了该半环上的Greenl-关系为其幂等元集合上的同余。 展开更多
关键词 GREEN-关系 完全正则 半环 矩形 同余 半格
下载PDF
π-纯正半群的r-半素矩形群同余
13
作者 邢建民 张玉芬 《纯粹数学与应用数学》 CSCD 北大核心 2007年第1期124-129,共6页
主要讨论π-纯正半群的r-半素矩形群同余和同余对之间的关系,并且找到了在r-半素矩形群同余的集合到r-半素矩形群同余对的集合之间的一一对应.
关键词 矩形 π-纯正半 同余
下载PDF
乘法半群(S,·)为矩形群的双半环
14
作者 刘立 李刚 《山东科学》 CAS 2017年第1期89-94,共6页
本文研究了(S,+)半群为半格、(S,·)半群为矩形群、(S,*)半群为半格的双半环。从双半环的两个子集出发构造两个偏序关系,得到了双半环的(S,·)半群上的Green-■关系■是双半环同余的一个充要条件,并给出了■是双半环同余的等价... 本文研究了(S,+)半群为半格、(S,·)半群为矩形群、(S,*)半群为半格的双半环。从双半环的两个子集出发构造两个偏序关系,得到了双半环的(S,·)半群上的Green-■关系■是双半环同余的一个充要条件,并给出了■是双半环同余的等价命题。 展开更多
关键词 半格 双半环 矩形 偏序 同余
下载PDF
半群同余格链条件的刻划
15
作者 周林芳 王彩芬 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第2期7-10,共4页
讨论了半群同余格链条件的一些基本性质。
关键词 同余格 链条件 矩形
下载PDF
关于半直积和圈积为矩形群的一些研究
16
作者 王德胜 程新民 《山东师范大学学报(自然科学版)》 CAS 1994年第1期11-13,共3页
给出了两个半群的半直积和圈积为矩形群的充要条件。并证明了半直积的最大左群同态象同构于各自最大左群同态象的半直积。
关键词 矩形 半直积 圈积
下载PDF
乘法半群为矩形群的nil扩张的半环
17
作者 蒲楠 李刚 《山东科学》 CAS 2019年第2期125-129,共5页
研究了加法半群为半格、乘法半群为矩形群的nil扩张的半环,从半环的子集出发构造乘法半群上的关系,得到H~*为半环(Reg(S),+,·)上同余关系的充要条件,给出了矩形群的nil扩张转化为矩形带的nil扩张条件,并将矩形群的nil扩张性质推广... 研究了加法半群为半格、乘法半群为矩形群的nil扩张的半环,从半环的子集出发构造乘法半群上的关系,得到H~*为半环(Reg(S),+,·)上同余关系的充要条件,给出了矩形群的nil扩张转化为矩形带的nil扩张条件,并将矩形群的nil扩张性质推广到矩形带的nil扩张和矩形群上。 展开更多
关键词 半环 矩形 GV半 同余 nil扩张
下载PDF
毕竟纯整半群上的矩形群同余 被引量:1
18
作者 石永芳 侍爱玲 《兰州理工大学学报》 CAS 北大核心 2006年第2期154-157,共4页
利用弱逆和核迹方法,刻画了毕竟纯整半群上的矩形群同余.给定毕竟纯整半群S的矩形群同余对(ξ,K),定义S上的二元关系ρ(ξ,K),证明了如果(ξ,K)是毕竟纯整半群S的矩形群同余对,则(ρξ,K)是S上惟一满足tr(ρξ,K)=ξ,ker(ρξ,K)=K的矩... 利用弱逆和核迹方法,刻画了毕竟纯整半群上的矩形群同余.给定毕竟纯整半群S的矩形群同余对(ξ,K),定义S上的二元关系ρ(ξ,K),证明了如果(ξ,K)是毕竟纯整半群S的矩形群同余对,则(ρξ,K)是S上惟一满足tr(ρξ,K)=ξ,ker(ρξ,K)=K的矩形群同余;反过来,如果ρ是S上的矩形群同余,则(trρ,kerρ)是S的矩形群同余对,并且ρ=(ρtrρ,kerρ). 展开更多
关键词 毕竟纯整半 弱逆 矩形同余 矩形同余对
下载PDF
E-逆半群上的同余 被引量:1
19
作者 王海军 李小光 田振际 《甘肃科学学报》 2009年第2期23-25,共3页
研究同余是研究半群的一种最常用的方法,以下主要通过定义正规同余和正规子半群来构造矩形同余对,从而研究E-逆半群上的矩形群同余.
关键词 正规同余 正规子半 矩形同余对 矩形同余
下载PDF
矩形群的nil-扩张的半格的半直积
20
作者 徐亚男 《山东师范大学学报(自然科学版)》 CAS 2013年第1期34-36,共3页
给出了两个半群的半直积为矩形群的nil-扩张的半格的充要条件.
关键词 矩形的nil-扩张的半格 半直积
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部