期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于类注意力的眼睛凝视估计网络
1
作者 徐金龙 董明瑞 +2 位作者 李颖颖 刘艳青 韩林 《计算机科学》 CSCD 北大核心 2024年第10期295-301,共7页
近年来,眼睛凝视估计引起广泛关注。基于RGB外观的凝视估计方法使用普通摄像机和深度学习来进行凝视估计,避免了像商用眼动仪一样使用昂贵的红外设备,为更准确和成本更低的眼睛凝视估计提供了可能。然而,RGB外观图像中包含如光照强度、... 近年来,眼睛凝视估计引起广泛关注。基于RGB外观的凝视估计方法使用普通摄像机和深度学习来进行凝视估计,避免了像商用眼动仪一样使用昂贵的红外设备,为更准确和成本更低的眼睛凝视估计提供了可能。然而,RGB外观图像中包含如光照强度、肤色等多种与凝视无关的特征,这些无关特征会在深度学习回归的过程中产生干扰,进而影响凝视估计的精度。针对以上问题,提出了一种名为类注意力网络(CA-Net)的新架构,它包含通道、尺度、眼睛3种不同的类注意力模块,通过这些类注意力模块可以提取和融合不同种类的注意力编码,从而降低与凝视无关特征所占的权重。在GazeCapture数据集上的大量实验表明,在基于RGB外观的凝视估计方法中,相比现有的最先进方法,CA-Net在手机和平板上分别能够提高约0.6%和7.4%的凝视估计精度。 展开更多
关键词 类注意力 轻压缩激励 自注意力 多尺度 眼睛凝视估计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部