期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
脑电信号中眼电伪迹自动去除方法的研究 被引量:19
1
作者 李明爱 崔燕 杨金福 《电子学报》 EI CAS CSCD 北大核心 2013年第6期1207-1213,共7页
针对实际采集的脑电信号受眼电干扰较大,提出一种基于离散小波变换(DWT)与独立分量分析(ICA)的自动去除眼电伪迹的方法(DWIC).对采集的多导脑电和眼电信号进行离散小波变换,获取多尺度小波系数,将串接小波系数作为ICA的输入;利用基于负... 针对实际采集的脑电信号受眼电干扰较大,提出一种基于离散小波变换(DWT)与独立分量分析(ICA)的自动去除眼电伪迹的方法(DWIC).对采集的多导脑电和眼电信号进行离散小波变换,获取多尺度小波系数,将串接小波系数作为ICA的输入;利用基于负熵判据的FastICA算法实现独立成分的快速获取,引入夹角余弦准则自动识别眼迹成分,并经过ICA逆变换将剔除眼迹后的独立成分投影返回到原脑电信号各个电极;通过DWT逆变换重构信号,即可得到去除眼迹的各导脑电信号.实验结果表明,DWICA方法极大地提高了脑电信号的信噪比,抗噪能力强且实时性好,为脑电信号的在线预处理提供了新思路. 展开更多
关键词 离散小波变换 独立分量分析 自动去除
下载PDF
基于CEEMDAN-ICA的单通道脑电信号眼电伪迹滤除方法 被引量:19
2
作者 罗志增 严志华 傅炜东 《传感技术学报》 CAS CSCD 北大核心 2018年第8期1211-1216,共6页
传统盲源分离法不能解决欠定问题,且分离信号与源信号对应关系不确定。提出一种基于自适应噪声完备经验模态分解(CEEMDAN)和独立成分分析(ICA)相结合的脑电信号眼电伪迹自动去除方法。该方法首先将含伪迹脑电信号自适应分解成多维本征... 传统盲源分离法不能解决欠定问题,且分离信号与源信号对应关系不确定。提出一种基于自适应噪声完备经验模态分解(CEEMDAN)和独立成分分析(ICA)相结合的脑电信号眼电伪迹自动去除方法。该方法首先将含伪迹脑电信号自适应分解成多维本征模态函数(IMF),以满足盲源分离方法对信号正定或超定要求,再对本征模态函数用ICA方法构建多维源信号,最后利用模糊熵阈值判据判别多维源信号中的伪迹信号,完成滤波并重构脑电信号。该方法相比于其他算法,能更好的去除眼电伪迹并保留原始信息,适合单通道脑电信号预处理。 展开更多
关键词 信号处理 完备经验模态分解 独立成分分析
下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:14
3
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 独立成分分析 自适应噪声完备经验模态分解 小波
下载PDF
典型相关分析去除脑电信号中眼电伪迹的研究 被引量:14
4
作者 张莉 何传红 何为 《计算机工程与应用》 CSCD 北大核心 2009年第31期218-220,共3页
给出了一种基于典型相关分析(Canonical Correlation Analysis,CCA)的盲源分离技术来去除脑电信号中的眼电伪迹。通过实验验证了基于CCA的盲源分离方法去除眼电伪迹的有效性,并将该方法与广泛使用的独立分量分析(Independent Component ... 给出了一种基于典型相关分析(Canonical Correlation Analysis,CCA)的盲源分离技术来去除脑电信号中的眼电伪迹。通过实验验证了基于CCA的盲源分离方法去除眼电伪迹的有效性,并将该方法与广泛使用的独立分量分析(Independent Component Analysis,ICA)进行了比较。实验结果表明,基于CCA的盲源分离方法可以对眼电伪迹进行成功地分离和消除,该方法相较于ICA方法而言,算法更为简单,计算速度更快。 展开更多
关键词 信号 典型相关分析 盲源分离
下载PDF
单通道脑电信号眼电伪迹去除算法研究 被引量:12
5
作者 刘志勇 孙金玮 卜宪庚 《自动化学报》 EI CSCD 北大核心 2017年第10期1726-1735,共10页
由眨眼和眼动产生的眼电伪迹(Electrooculography,EOG)信号是脑电信号(Electroencephalography,EEG)中的主要噪声信号之一.目前,多通道脑电信号中眼电伪迹的去除算法已经较为成熟.而在单通道脑电信号的眼电伪迹去除中,由于采集通道数量... 由眨眼和眼动产生的眼电伪迹(Electrooculography,EOG)信号是脑电信号(Electroencephalography,EEG)中的主要噪声信号之一.目前,多通道脑电信号中眼电伪迹的去除算法已经较为成熟.而在单通道脑电信号的眼电伪迹去除中,由于采集通道数量较少且缺乏参考眼电信号,目前尚无十分有效的去除方法.本文提出一种基于小波变换(Wavelet transform,WT)、集合经验模态分解(Ensemble empirical mode decomposition,EEMD)和独立成分分析(Independent component analysis,ICA)的WT-EEMD-ICA单通道脑电信号眼电伪迹去除算法.实验表明:WT-EEMD-ICA算法有效地解决了单通道WT-ICA算法中的超完备问题,能够有效去除单通道脑电信号中的眼电伪迹,并且分离出的眼电伪迹成分与参考通道采集的眼电信号相关性较强. 展开更多
关键词 信号 小波变换 集合经验模态分解 独立成分分析
下载PDF
一种基于盲源分离的眼电伪迹自动去除方法 被引量:10
6
作者 计瑜 沈继忠 施锦河 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第3期415-421,464,共8页
为解决传统盲源分离算法(BSS)用于眼电伪迹去除大都存在伪迹过估计、需要人为辨别伪迹成分而不适合在线应用的不足,提出一种基于BSS算法的眼电伪迹自动去除方法.利用BSS算法对脑电信号进行分离得到独立成分,以相关系数作为判据,针对垂... 为解决传统盲源分离算法(BSS)用于眼电伪迹去除大都存在伪迹过估计、需要人为辨别伪迹成分而不适合在线应用的不足,提出一种基于BSS算法的眼电伪迹自动去除方法.利用BSS算法对脑电信号进行分离得到独立成分,以相关系数作为判据,针对垂直眼电(VEOG)和水平眼电(HEOG)的各自特点确定不同的时间窗,寻找最优成分组合标定眨眼或眼动活动发生的时域区间,将找到的存在伪迹的成分区间置零并重建脑电(EEG)信号.通过真实P300脑电数据实验的结果表明:该方法能有效地自动去除眼电伪迹,且处理过程简单易行,克服了眼电伪迹过估计等问题.算法重建EEG信号与原始脑电(EEG)信号的平均相关系数分别从0.851 3和0.900 6提高到0.923 7,而均方误差分别减少了19.3%和16.6%,适合在线应用. 展开更多
关键词 自动去除 二阶盲辨识 相关系数
下载PDF
一种结合自适应噪声完备经验模态分解和盲反卷积去除脑电中眼电伪迹的新方法 被引量:8
7
作者 吴全玉 张文强 +2 位作者 潘玲佼 陶为戈 刘晓杰 《数据采集与处理》 CSCD 北大核心 2020年第4期720-729,共10页
针对微弱的脑电(Electroencephalogram,EEG)信号在采集过程中夹杂着各种生理伪迹,特别易遭到眨眼和眼动产生的眼电(Electrooculography,EOG)伪迹干扰。本文提出在自适应噪声完备经验模态分解(Complete ensemble empirical mode decompos... 针对微弱的脑电(Electroencephalogram,EEG)信号在采集过程中夹杂着各种生理伪迹,特别易遭到眨眼和眼动产生的眼电(Electrooculography,EOG)伪迹干扰。本文提出在自适应噪声完备经验模态分解(Complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的基础上,构建盲反卷积(Blind deconvolution,BD)模型,实现EOG伪迹分离的方法。该方法首先运用CEEMDAN方法将含有伪迹的EEG信号分解成若干固有模态函数(Intrinsic mode function,IMF)分量,再以模态分量为观测信号送入EEG信号和EOG伪迹两个源信号构成的盲反卷积模型中,通过构建代价函数迭代实现EEG信号与EOG伪迹分离。为了验证新提出的算法,采用标准CHB⁃MIT头皮脑电数据库进行实验验证,EOG伪迹分离后的数据跟原始脑电数据作相关性分析,其相关系数是0.82。结果证实本文提出的方法保留有大多数原始EEG信号分量,同时对EOG伪迹的分离也具有良好的效果。 展开更多
关键词 信号 经验模态分解 盲反卷积
下载PDF
基于CEEMDAN-CFAR的单通道脑电信号眼电伪迹去除方法研究 被引量:4
8
作者 荆钰霏 李川涛 +1 位作者 王伟 于旭东 《医疗卫生装备》 CAS 2022年第4期1-7,共7页
目的:提出一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和恒虚警率(constant false alarm rate,CFAR)算法的眼电伪迹去除方法。方法:首先采用CEEMDAN方法分解原... 目的:提出一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和恒虚警率(constant false alarm rate,CFAR)算法的眼电伪迹去除方法。方法:首先采用CEEMDAN方法分解原始信号,得到低频噪声和含有明显眼电脉冲信号的本征模态函数(intrinsic mode function,IMF)分量。其次采用CFAR算法实现IMF分量中眼电伪迹的自动识别。然后对含有眼电伪迹的脑电信号进行预处理后获得纯净脑电信号。最后通过实验验证该方法的有效性。结果:该方法能在有效滤除眼电伪迹的同时较好地保留局部细节和有用信息。结论:该方法具有计算简单、运行速度快的优点,适用于单通道脑电信号中的眼电伪迹去除。 展开更多
关键词 自适应噪声完备集成经验模态分解 恒虚警率 单通道脑信号 去除
下载PDF
脑电信号中眼电伪迹的自动去除算法 被引量:6
9
作者 王魁 叶闯 +1 位作者 沈益青 王柏祥 《计算机工程》 CAS CSCD 北大核心 2011年第23期257-260,共4页
为实现眼电伪迹的自动去除,提高算法的有效性和稳健性,提出一种眼电伪迹自动去除算法。采用样本熵和一种通用的伪迹判决方法对眼电伪迹进行自动识别,通过脑电信号的重构实现眼电伪迹的去除。实验结果表明,对于不同长度的真实脑电信号,... 为实现眼电伪迹的自动去除,提高算法的有效性和稳健性,提出一种眼电伪迹自动去除算法。采用样本熵和一种通用的伪迹判决方法对眼电伪迹进行自动识别,通过脑电信号的重构实现眼电伪迹的去除。实验结果表明,对于不同长度的真实脑电信号,该算法均能准确地去除眼电伪迹,较好地保留其他的脑电信号成分,且可以完全自动地去除眼电伪迹,适用于实时场合。 展开更多
关键词 信号 二阶盲辨识 样本熵 分形维数
下载PDF
改进独立分量算法的眼电伪迹去除方法研究 被引量:6
10
作者 王灿锋 孙曜 《计算机工程与应用》 CSCD 北大核心 2018年第4期167-173,共7页
脑电信号采集过程中易受眼电干扰,给脑电信号分析处理带来极大的不便,由此提出了一种改进独立分量分析(IICA)自动去除眼电伪迹的方法。该方法将水平和垂直眼电信号按照一定的比例混叠成一导新的信号,并与脑电信号一起作为输入;采用基于... 脑电信号采集过程中易受眼电干扰,给脑电信号分析处理带来极大的不便,由此提出了一种改进独立分量分析(IICA)自动去除眼电伪迹的方法。该方法将水平和垂直眼电信号按照一定的比例混叠成一导新的信号,并与脑电信号一起作为输入;采用基于负熵判据的Fast ICA算法快速获取各导独立分量;记录此时的负熵判据参数a,并利用相关系数识别混叠眼电信号独立分量,记录对应的相关系数;a加上一定的步长,重复上述步骤至a达到阈值时停止;重复多次上述循环,获取均值向量,取出均值向量中最大的相关系数与所对应的a,根据a获取新的独立分量,采用相关系数自动识别混叠眼电独立分量,并置零;再进行ICA逆变换返回到原信号各个电极,即可得到同时去除水平与垂直眼电伪迹后的各导脑电信号。实验结果表明,IICA方法能有效降低去伪迹耗时,极大提高信噪比,减少均方根误差。 展开更多
关键词 改进独立分量分析 混叠 负熵判据
下载PDF
多通道脑电信号眼电伪迹自适应去除方法 被引量:1
11
作者 陈万 蔡艳平 +2 位作者 李爱华 杨梅枝 齐啸 《科学技术与工程》 北大核心 2023年第18期7694-7700,共7页
针对现有方法在眼电伪迹自动去除中存在有用信息丢失、伪迹分量识别困难的问题,提出了一种结合粒子群优化算法、独立成分分析和小波变换的伪迹自适应去除算法。首先,采用均方根误差和Pearson相关系数设计了粒子群优化算法的适应度函数,... 针对现有方法在眼电伪迹自动去除中存在有用信息丢失、伪迹分量识别困难的问题,提出了一种结合粒子群优化算法、独立成分分析和小波变换的伪迹自适应去除算法。首先,采用均方根误差和Pearson相关系数设计了粒子群优化算法的适应度函数,利用优化算法实现了两个样本熵阈值的自适应设置;然后利用快速独立成分分析算法将脑电信号分解为统计独立分量,根据第一个样本熵阈值自动识别含伪迹分量,含伪迹分量经过4层小波分解得到5个小波分量,根据第二个样本熵阈值自动识别伪迹分量,将识别的伪迹分量置零;最后经过小波重构和逆变换,获得去除眼电伪迹的脑电信号。采用Graz data set A数据集进行实验验证,结果表明提出的方法能够实现多通道脑电信号伪迹的自动去除;采用Klados数据集进行实验验证,结果表明,与SE-CEEMDAN方法相比,采用提出方法实验获得的均方根误差降低了4.816,约38.2%,Pearson相关系数提高了0.025,约2.97%。 展开更多
关键词 信号 独立成分分析 小波变换 粒子群优化
下载PDF
基于独立分量分析的眼电伪迹去除方法研究 被引量:5
12
作者 耿晓中 李得志 《长春工程学院学报(自然科学版)》 2020年第1期78-81,共4页
脑电信号极易受到眼电信号的干扰,这会导致脑电信号处理结果与实际情况发生较大的偏差,因此,去除包含于脑电信号中的眼电成分是信号预处理的一个重要操作。研究了独立成分分析理论及概要模型,提出一种基于Informax的优化ICA方法,对混入... 脑电信号极易受到眼电信号的干扰,这会导致脑电信号处理结果与实际情况发生较大的偏差,因此,去除包含于脑电信号中的眼电成分是信号预处理的一个重要操作。研究了独立成分分析理论及概要模型,提出一种基于Informax的优化ICA方法,对混入脑电信号中的眼电信号进行辨别、分离、重构,实验结果表明该方法能够准确地从混合信号中区分出眼电伪迹的独立成分,进而实现对原脑电信号的特征增强。 展开更多
关键词 信号 独立成分分析 信息极大化
下载PDF
基于小波变换和FastICA的眼电伪迹去除研究
13
作者 汪林恩 耿晓中 +2 位作者 张茜 岳梦哲 户唯新 《软件工程》 2023年第12期29-32,共4页
为了高效去除脑电信号(Electroencephalogram,EEG)中的眼电伪迹,文章提出一种基于小波变换(Wavelet Transform,WT)和快速独立成分分析(Fast Independent Component Analysis,FastICA)相结合的眼电伪迹去除方法。首先,应用小波变换将信... 为了高效去除脑电信号(Electroencephalogram,EEG)中的眼电伪迹,文章提出一种基于小波变换(Wavelet Transform,WT)和快速独立成分分析(Fast Independent Component Analysis,FastICA)相结合的眼电伪迹去除方法。首先,应用小波变换将信号分解成不同频率的小波分量,采用适合的小波基函数和阈值针对高低频噪声做去噪处理;其次,应用FastICA算法分离出各通道的独立成分,获取纯净的脑电信号;最后,对BCI competition IV公共数据集应用融合算法,并输入支持向量机(Support Vector Machine,SVM)进行分类验证。实验结果表明,相较于单一的小波变换和FastICA算法,采用文章提出的融合算法处理后的脑电信号的SVM分类识别率分别提升了18.9%和15.8%,证明该融合算法对去除脑电信号中的眼电伪迹有较好的效果。 展开更多
关键词 信号 小波变换 FASTICA
下载PDF
脑电信号中眼电伪迹自动识别与去除方法研究 被引量:4
14
作者 李佳庆 李海芳 +2 位作者 白一帆 阴桂梅 孙丽婷 《计算机工程与应用》 CSCD 北大核心 2018年第13期148-152,167,共6页
传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成... 传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成分与GFP(Global Field Power)值的相关系数,再比较相关系数,将其绝对值最大所对应的独立成分识别为眼电伪迹独立成分,最后把该独立成分置零重构干净的脑电信号,实现眼电伪迹的自动去除。通过自采的30例脑电数据实验结果表明:该方法能完全自动地去除眼电伪迹成分并有效保留其他脑电成分,且快速准确,适用于实时场合。 展开更多
关键词 信号 独立成分分析 自动去除
下载PDF
一种基于EWT-ICEEMDAN的单通道脑电信号眼电伪迹去除算法
15
作者 宋婷 舒智林 +2 位作者 孙玉波 韩建达 于宁波 《传感技术学报》 CAS CSCD 北大核心 2023年第10期1584-1592,共9页
脑电信号和眼电信号存在频谱混叠,目前的单通道脑电信号中眼电伪迹去除方法容易造成脑电信号失真。提出一种基于经验小波变换(EWT)和改进的自适应噪声完备经验模态分解(ICEEMDAN)的单通道脑电信号眼电伪迹去除算法。首先使用EWT将单通... 脑电信号和眼电信号存在频谱混叠,目前的单通道脑电信号中眼电伪迹去除方法容易造成脑电信号失真。提出一种基于经验小波变换(EWT)和改进的自适应噪声完备经验模态分解(ICEEMDAN)的单通道脑电信号眼电伪迹去除算法。首先使用EWT将单通道脑电信号分解为δ频段和高频段信号,再用ICEEMDAN将δ频段信号自适应分解为多维本征模态函数(IMFs),设置样本熵阈值自动去除眼电伪迹信号,最后重构得到滤波后的脑电信号。基于半模拟脑电数据和真实脑电数据开展实验,结果表明所提算法相比于已有算法能够在去除眼电伪迹的同时更好地保留原始脑电信息。 展开更多
关键词 单通道脑信号 经验小波变换 完备经验模态分解
下载PDF
基于独立分量分析去除脑电中眨眼和水平扫视的伪迹 被引量:4
16
作者 董洁 王涛 张爱桃 《航天医学与医学工程》 CAS CSCD 北大核心 2011年第2期122-127,共6页
目的利用独立分量分析方法(ICA)将混合在观测信号中相互独立的源信号分离出来。方法记录3个正常人自然眨眼和水平扫视条件下7道脑电信号和2道眼电信号,选取7道脑电信号进行处理,2道眼电信号用来指示干扰源的情况。使用扩展相似对角化算... 目的利用独立分量分析方法(ICA)将混合在观测信号中相互独立的源信号分离出来。方法记录3个正常人自然眨眼和水平扫视条件下7道脑电信号和2道眼电信号,选取7道脑电信号进行处理,2道眼电信号用来指示干扰源的情况。使用扩展相似对角化算法(JADE)将脑电信号分解成多个独立分量,同时利用伪迹脑地形图特征,判断出与眼电伪迹相关分量并将其去除。结果存在于前额电极的眼电干扰被消除,同时其他电极上的信号细节成分较好地保留下来。独立分量分析方法成功去除了脑电信号中的眼电伪迹。结论本文中算法可以用于实现脑电信号中眨眼和水平扫视干扰的去除,其中对前者的去除更加有效。 展开更多
关键词 独立分量分析
下载PDF
脑电中眼电伪迹的自动识别与去除 被引量:4
17
作者 李明爱 刘帆 《北京生物医学工程》 2018年第6期559-565,共7页
目的为改善脑电中眼电伪迹的去除效果,基于脑电的非平稳性和模糊特点,提出一种将离散小波变换与二阶盲辨识相结合,并以模糊熵为眼电伪迹判别准则的眼电伪迹去除方法。方法首先,采用离散小波变换对含噪的脑电信号进行多分辩分析,获得平... 目的为改善脑电中眼电伪迹的去除效果,基于脑电的非平稳性和模糊特点,提出一种将离散小波变换与二阶盲辨识相结合,并以模糊熵为眼电伪迹判别准则的眼电伪迹去除方法。方法首先,采用离散小波变换对含噪的脑电信号进行多分辩分析,获得平稳性更好的多尺度小波系数;进而,选择同层的小波系数构成小波系数矩阵,并基于二阶盲辨识对其盲源分离,得到源信号的估计;进一步以模糊熵为判别依据,实现眼电伪迹的自动判别与剔除。实验数据采用BCI Competition IV公开数据库,使用信噪比、相关系数及均方根误差等常用伪迹判别指标进行衡量。结果本文方法相对于常用的眼电伪迹去除方法在多个性能指标上均取得最大值。结论本文提出的眼电伪迹去除方法,实现了眼电伪迹的自动精确判断与剔除,并表现出很好的稳定性。 展开更多
关键词 信号 离散小波变换 二阶盲辨识 模糊熵
下载PDF
EWT算法在单通道脑电信号眼电伪迹自动去除中的研究
18
作者 王东庆 周建华 伏云发 《电子测量与仪器学报》 CSCD 北大核心 2023年第2期121-129,共9页
针对单通道脑电信号眼电伪迹去除算法中存在信息丢失和计算速度慢的问题,提出了一种基于经验小波变换(empirical wavelet transform,EWT)、小波变换(wavelet transform,WT)和近似熵的眼电伪迹去除方法。首先,采用EWT算法自适应分割脑电... 针对单通道脑电信号眼电伪迹去除算法中存在信息丢失和计算速度慢的问题,提出了一种基于经验小波变换(empirical wavelet transform,EWT)、小波变换(wavelet transform,WT)和近似熵的眼电伪迹去除方法。首先,采用EWT算法自适应分割脑电信号频谱,在分割的区间上构造合适的滤波器组提取具有紧支撑结构的经验模态分量。然后对各模态分量进行WT分解,计算分解后的近似熵,同时设置近似熵阈值对眼电伪迹自动识别并去除。最后采用WT和EWT的逆变换重构信号。采用公开的Klados数据集和Mohit Agarwal的EEG-VR数据集对算法进行实验,实验结果表明:该方法计算时间的平均值为0.1995 s,Alpha波的功率失真均值和方差分别为0.1284和0.1511,Beta波的功率失真均值和方差分别为0.0977和0.1580。所提算法与EMD-ICA、CEEMDAN-ICA和WT算法相比,计算速度快,伪迹去除能力强,能够保留脑电信号有用信息更多。 展开更多
关键词 信号 经验小波变换 自动去除
下载PDF
离散小波变换结合二阶盲辨识的眼电伪迹自动去除方法 被引量:3
19
作者 姚悦 丁永红 裴东兴 《科学技术与工程》 北大核心 2018年第22期222-228,共7页
针对传统去除眼电伪迹的方法极易丢失潜在脑电信号的问题,提出一种离散小波变换(DWT)与二阶盲辨识(SOBI)结合的眼电伪迹自动去除方法(DSOBI)。首先将多通道脑电和眼电信号进行多层DWT得到多尺度下的小波系数,在小波域利用SOBI消除小波... 针对传统去除眼电伪迹的方法极易丢失潜在脑电信号的问题,提出一种离散小波变换(DWT)与二阶盲辨识(SOBI)结合的眼电伪迹自动去除方法(DSOBI)。首先将多通道脑电和眼电信号进行多层DWT得到多尺度下的小波系数,在小波域利用SOBI消除小波系数统计上的相关性,有效分离脑电和眼电伪迹,根据相关系数识别出眼电伪迹源分量并置零,再依次重构得到干净的脑电信号(electroencephalography,EEG)。方法对构造的数据进行去伪迹处理,均方误差为1.93,信噪比为14.32,与传统方法相比具有显著优势;对10位被试的真实脑电数据进行处理,利用相关系数验证本方法去除眼电伪迹的有效性,同时保留更多脑电信息。 展开更多
关键词 离散小波变换 二阶盲辨识
下载PDF
基于典型相关分析和小波变换的眼电伪迹去除 被引量:3
20
作者 赵春煜 邱天爽 《北京生物医学工程》 2011年第5期474-479,共6页
目的针对脑电信号中眼电伪迹去除尚存在的问题,提出一种基于典型相关分析与小波变换的(wavelet-enhanced canonical correlation analysis,wCCA)自动去除眼电伪迹的算法。方法首先,充分利用脑电信号和眼电伪迹的空间分布特征,将基于典... 目的针对脑电信号中眼电伪迹去除尚存在的问题,提出一种基于典型相关分析与小波变换的(wavelet-enhanced canonical correlation analysis,wCCA)自动去除眼电伪迹的算法。方法首先,充分利用脑电信号和眼电伪迹的空间分布特征,将基于典型相关分析的盲源分离算法分别应用于左右脑区的混合信号中,从而保证典型相关分析分解得到的第一个典型相关变量(即左右脑区之间的最公共成分),就是眼电伪迹分量。然后为了恢复泄漏在该伪迹分量中的脑电成分,对伪迹分量进行小波阈值滤波,将高于某一阈值的小波系数置零,而保留低于阈值的系数。结果与其他三种基于盲源分离去除眼电伪迹的方法相比较,该方法在有效地自动去除眼电伪迹的同时,很好地保留了潜在的脑电信号,去除效果明显优于其他三种方法。结论由于该算法简单,处理速度较快,因此应用于实时的脑机接口系统中更具优越性,为后续脑电信号的特征提取和分类分析提供了良好的基础。 展开更多
关键词 信号 典型相关分析 小波阈值
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部