期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进SEGNET模型的图像语义分割 被引量:10
1
作者 罗嗣卿 张志超 岳琪 《计算机工程》 CAS CSCD 北大核心 2021年第4期256-261,共6页
使用原始SEGNET模型对图像进行语义分割时,未对图像中相邻像素点间的关系进行考虑,导致同一目标中像素点类别预测结果不一致。通过在SEGNET结构中加入一条自上而下的通道,使得SEGNET包含的多尺度语义信息更加丰富,从而提升对每个像素点... 使用原始SEGNET模型对图像进行语义分割时,未对图像中相邻像素点间的关系进行考虑,导致同一目标中像素点类别预测结果不一致。通过在SEGNET结构中加入一条自上而下的通道,使得SEGNET包含的多尺度语义信息更加丰富,从而提升对每个像素点的类别预测精度,在模型中加入生成对抗网络以充分考虑空间中相邻像素点间关系。实验结果表明,该模型的语义分割效果相比原始SEGNET模型显著提升,且可有效解决SEGNET测试中出现的分类错误问题。 展开更多
关键词 SEGNET模型 生成对抗网络 多尺度语义信息 相邻像素类别关系 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部