期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进SEGNET模型的图像语义分割
被引量:
10
1
作者
罗嗣卿
张志超
岳琪
《计算机工程》
CAS
CSCD
北大核心
2021年第4期256-261,共6页
使用原始SEGNET模型对图像进行语义分割时,未对图像中相邻像素点间的关系进行考虑,导致同一目标中像素点类别预测结果不一致。通过在SEGNET结构中加入一条自上而下的通道,使得SEGNET包含的多尺度语义信息更加丰富,从而提升对每个像素点...
使用原始SEGNET模型对图像进行语义分割时,未对图像中相邻像素点间的关系进行考虑,导致同一目标中像素点类别预测结果不一致。通过在SEGNET结构中加入一条自上而下的通道,使得SEGNET包含的多尺度语义信息更加丰富,从而提升对每个像素点的类别预测精度,在模型中加入生成对抗网络以充分考虑空间中相邻像素点间关系。实验结果表明,该模型的语义分割效果相比原始SEGNET模型显著提升,且可有效解决SEGNET测试中出现的分类错误问题。
展开更多
关键词
SEGNET模型
生成对抗网络
多尺度语义信息
相邻
像素
类别
关系
特征融合
下载PDF
职称材料
题名
基于改进SEGNET模型的图像语义分割
被引量:
10
1
作者
罗嗣卿
张志超
岳琪
机构
东北林业大学信息与计算机工程学院
出处
《计算机工程》
CAS
CSCD
北大核心
2021年第4期256-261,共6页
基金
国家自然科学基金青年项目“基于用户标签和主体兴趣的社会媒体信息推荐研究”(61806049)。
文摘
使用原始SEGNET模型对图像进行语义分割时,未对图像中相邻像素点间的关系进行考虑,导致同一目标中像素点类别预测结果不一致。通过在SEGNET结构中加入一条自上而下的通道,使得SEGNET包含的多尺度语义信息更加丰富,从而提升对每个像素点的类别预测精度,在模型中加入生成对抗网络以充分考虑空间中相邻像素点间关系。实验结果表明,该模型的语义分割效果相比原始SEGNET模型显著提升,且可有效解决SEGNET测试中出现的分类错误问题。
关键词
SEGNET模型
生成对抗网络
多尺度语义信息
相邻
像素
类别
关系
特征融合
Keywords
SEGNET model
Generative Adversarial Network(GAN)
multi-scale semantic information
adjacent pixel category relationship
feature fusion
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进SEGNET模型的图像语义分割
罗嗣卿
张志超
岳琪
《计算机工程》
CAS
CSCD
北大核心
2021
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部