期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多分支注意网络与相似度学习策略的无监督行人重识别
1
作者
冯尊登
王洪元
+2 位作者
林龙
孙博言
陈海琴
《图学学报》
CSCD
北大核心
2023年第2期280-290,共11页
无监督行人重识别的挑战在于学习没有真实标签的行人的判别性特征。为增强网络对行人特征的表达能力,进一步从空间和通道维度上提取更丰富的特征信息,提出了一种基于多分支注意网络的行人重识别特征提取方法。该方法通过捕获空间维度和...
无监督行人重识别的挑战在于学习没有真实标签的行人的判别性特征。为增强网络对行人特征的表达能力,进一步从空间和通道维度上提取更丰富的特征信息,提出了一种基于多分支注意网络的行人重识别特征提取方法。该方法通过捕获空间维度和通道维度上不同分支之间的交互信息,能够学习到更具判别性的行人特征表示。此外,针对噪声标签会对聚类质心产生干扰的问题,提出了相似度学习策略(SLS)。该策略先计算每个聚类中样本特征之间的相似性,然后选取相似性分数最高的特征向量所对应的样本进行对比学习,有效地缓解了聚类噪声导致的累积训练误差。实验结果表明,和无监督场景下的自步对比学习方法(SPCL)相比,在Market-1501,DukeMTMC-reID和MSMT17等3个数据集上的rank-1准确度分别提升了4.6%,3.3%和16.3%,显著地提高了无监督行人重识别的检索精度。
展开更多
关键词
无监督行人重识别
多分支注意网络
聚类质心
相似
度
学习策略
对比
学习
下载PDF
职称材料
题名
基于多分支注意网络与相似度学习策略的无监督行人重识别
1
作者
冯尊登
王洪元
林龙
孙博言
陈海琴
机构
常州大学计算机与人工智能学院
出处
《图学学报》
CSCD
北大核心
2023年第2期280-290,共11页
基金
国家自然科学基金项目(61976028)
江苏省研究生科研与实践创新计划项目(KYCX22_3067)。
文摘
无监督行人重识别的挑战在于学习没有真实标签的行人的判别性特征。为增强网络对行人特征的表达能力,进一步从空间和通道维度上提取更丰富的特征信息,提出了一种基于多分支注意网络的行人重识别特征提取方法。该方法通过捕获空间维度和通道维度上不同分支之间的交互信息,能够学习到更具判别性的行人特征表示。此外,针对噪声标签会对聚类质心产生干扰的问题,提出了相似度学习策略(SLS)。该策略先计算每个聚类中样本特征之间的相似性,然后选取相似性分数最高的特征向量所对应的样本进行对比学习,有效地缓解了聚类噪声导致的累积训练误差。实验结果表明,和无监督场景下的自步对比学习方法(SPCL)相比,在Market-1501,DukeMTMC-reID和MSMT17等3个数据集上的rank-1准确度分别提升了4.6%,3.3%和16.3%,显著地提高了无监督行人重识别的检索精度。
关键词
无监督行人重识别
多分支注意网络
聚类质心
相似
度
学习策略
对比
学习
Keywords
unsupervised person re-identification
multi-branch attention network
cluster centroid
similarity learning strategy
contrastive learning
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多分支注意网络与相似度学习策略的无监督行人重识别
冯尊登
王洪元
林龙
孙博言
陈海琴
《图学学报》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部