为了更好地应对多目标跟踪联合检测算法面对的场景遮挡问题,通过结合注意力机制,提出基于Transformer的运动预测和数据关联(Transformer-based motion prediction and data association,TrMPDA)联合检测跟踪方法。首先,考虑到置信度检...为了更好地应对多目标跟踪联合检测算法面对的场景遮挡问题,通过结合注意力机制,提出基于Transformer的运动预测和数据关联(Transformer-based motion prediction and data association,TrMPDA)联合检测跟踪方法。首先,考虑到置信度检测框的质量以及深度特征的视觉表示能力对遮挡场景下跟踪效果的影响,重新设计TrMPDA骨干网络中的ResNet卷积模块,利用相邻像素和长距离像素间丰富的上下文关系指导动态注意矩阵的学习,增强深度特征的视觉表示能力,并通过边界框的宽和高估计边界框位置,提高置信度检测框的质量。其次,在本文方法中保留所有的检测框,根据阈值大小划分高置信度检测框和低置信度检测框,分别执行数据关联匹配,以此来平衡由于遮挡导致的检测框低置信度。实验结果表明本文提出的TrMPDA方法与典型的Sort、JDE、Fairmot等多目标跟踪算法相比具有更好的跟踪效果,能够应对多目标跟踪中目标遮挡的问题。展开更多
文摘本文针对单一特征目标相关滤波算法因光照变化、目标遮挡、低分辨率和运动模糊等导致目标跟踪的稳定性较差的问题,提出了一种将多种特征进行自适应融合的跟踪算法。本文算法在FDSST算法的基础上,自适应融合梯度直方图特征HOG(Histogram of Oriented Gradient)、颜色名特征CN(Color Name)和灰度特征来增强特征的表达能力;提出遮挡判断策略,能够有效的判断跟踪过程中的目标遮挡现象;引入目标重定位机制,在发生目标遮挡或干扰时,能够重新定位目标位置,有效的抑制跟踪漂移现象的产生。最后,本文选取OTB50和OTB100作为实验数据集,将本文算法和选取的六种主流算法进行性能比较。实验结果表明,本文算法在光照变化、运动模糊和目标遮挡等情况下的表现具有较高的稳定性和准确性;在成功率和跟踪精确度上都优于其他六种算法。
文摘为了更好地应对多目标跟踪联合检测算法面对的场景遮挡问题,通过结合注意力机制,提出基于Transformer的运动预测和数据关联(Transformer-based motion prediction and data association,TrMPDA)联合检测跟踪方法。首先,考虑到置信度检测框的质量以及深度特征的视觉表示能力对遮挡场景下跟踪效果的影响,重新设计TrMPDA骨干网络中的ResNet卷积模块,利用相邻像素和长距离像素间丰富的上下文关系指导动态注意矩阵的学习,增强深度特征的视觉表示能力,并通过边界框的宽和高估计边界框位置,提高置信度检测框的质量。其次,在本文方法中保留所有的检测框,根据阈值大小划分高置信度检测框和低置信度检测框,分别执行数据关联匹配,以此来平衡由于遮挡导致的检测框低置信度。实验结果表明本文提出的TrMPDA方法与典型的Sort、JDE、Fairmot等多目标跟踪算法相比具有更好的跟踪效果,能够应对多目标跟踪中目标遮挡的问题。