期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
一种面向目标的情感极性分析方法 被引量:3
1
作者 王文竹 肖波 陈柯宏 《北京邮电大学学报》 EI CAS CSCD 北大核心 2021年第5期21-27,共7页
面向目标的情感分析是细粒度情感分析的重要任务之一,旨在预测句子中给定目标实体的情感极性.当前大多数研究方法忽略了句法结构信息,在情感判别时往往会关注无关词汇,从而使分类性能下降.为此,设计了一种新的引入句法结构的模型,该模... 面向目标的情感分析是细粒度情感分析的重要任务之一,旨在预测句子中给定目标实体的情感极性.当前大多数研究方法忽略了句法结构信息,在情感判别时往往会关注无关词汇,从而使分类性能下降.为此,设计了一种新的引入句法结构的模型,该模型利用双向预训练编码器和作用于依存句法树的图卷积网络分别捕获文本的上下文信息和句法结构信息,并使用多头注意力机制进行信息聚合得到目标的情感分类表征.此外,还将该模型与现有的领域自适应方法相结合,同时向模型中引入领域知识和句法结构知识,进一步提升了模型效果.在几个常用的标准数据集上的实验结果表明了上述模型的有效性。 展开更多
关键词 目标情感分析 图卷积网络 基于深度自注意力网络的双向编码器 依存树
原文传递
面向目标情感分析的双重图注意力网络模型 被引量:2
2
作者 崔少国 陈思奇 杜兴 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第1期137-148,共12页
目标情感分析旨在分析评论文本中不同目标所对应的情感倾向。当前,基于图神经网络的方法使用依存句法树来融入依存句法关系,一方面,此类方法大多忽略了依存关系缺乏区分度的事实;另一方面,未考虑依存句法树提供的依存关系存在目标与情... 目标情感分析旨在分析评论文本中不同目标所对应的情感倾向。当前,基于图神经网络的方法使用依存句法树来融入依存句法关系,一方面,此类方法大多忽略了依存关系缺乏区分度的事实;另一方面,未考虑依存句法树提供的依存关系存在目标与情感词关系缺失的问题。为此,提出双重图注意力网络模型。该模型首先使用双向长短期记忆网络得到具有语义信息的词节点表示,然后根据依存句法树在词节点表示上构建句法图注意力网络,实现依存句法关系重要程度的区分,更有效地建立目标与情感词之间的关系,进而得到更准确的目标情感特征表示;同时根据句子的无向完全图构建全局图注意力网络来挖掘目标与情感词缺失的关系,进一步提升模型的性能。实验结果表明,与现有模型对比,双重图注意力网络模型在不同数据集上的准确率与宏平均F1值均取得了更好结果。 展开更多
关键词 自然语言处理 目标情感分析 依存关系 图注意力网络 注意力机制
下载PDF
面向语义片段结构化自注意力的目标情感分析 被引量:1
3
作者 邓航 陈渝 +1 位作者 赵容梅 琚生根 《小型微型计算机系统》 CSCD 北大核心 2022年第12期2499-2505,共7页
目标情感分析任务中大多数方法都使用循环神经网络或注意力机制对句子进行建模,但循环神经网络很难进行并行化计算,且不能充分捕捉长距离的语义信息;注意力机制注重于词与词之间的相关性,忽略了语义片段的重要性.针对以上问题,论文提出... 目标情感分析任务中大多数方法都使用循环神经网络或注意力机制对句子进行建模,但循环神经网络很难进行并行化计算,且不能充分捕捉长距离的语义信息;注意力机制注重于词与词之间的相关性,忽略了语义片段的重要性.针对以上问题,论文提出了一种面向语义片段结构化自注意力的目标情感分析方法.首先通过BERT获取目标词、上下文和整个句子的嵌入表示,再利用注意力编码网络进行语义建模.其次,通过多头注意力机制获得目标与上下文的融合语义特征,通过结构化自注意力机制获得句子片段的语义特征.最终,在融合各个语义特征的基础上对目标的情感极性分类.本方法在SemEval 2014 Task4和SemEval 2015 Task12通用数据集上的实验表明,该方法对比基线方法获得了提升. 展开更多
关键词 目标情感分析 注意力编码网络 结构化自注意力 BERT
下载PDF
融合方向感知Transformer的目标情感分析 被引量:1
4
作者 蔡瑞初 尹婉 许柏炎 《小型微型计算机系统》 CSCD 北大核心 2022年第11期2285-2292,共8页
基于目标的情感分析(Target-Based Sentiment Analysis)是情感分析领域最具有挑战性的课题之一,需要同时解决目标提取和特定目标情感分析两个子任务.现有研究工作仍存在两个问题:第一,模型无法充分利用目标边界和情感信息;第二,普遍采... 基于目标的情感分析(Target-Based Sentiment Analysis)是情感分析领域最具有挑战性的课题之一,需要同时解决目标提取和特定目标情感分析两个子任务.现有研究工作仍存在两个问题:第一,模型无法充分利用目标边界和情感信息;第二,普遍采用长短期记忆网络提取特征,无法捕抓输入句子的内部关系.为了解决上述问题,本文通过引入方向感知的Transformer,提出一种基于双辅助网络的目标情感分析模型DNTSA(Dual-assist Network based model for Target Sentiment Analysis),其核心思想是使用方向感知的Transformer作为特征提取器有效对齐多个目标词和情感词的内在联系,通过双辅助网络进一步增强模型的情感识别和目标提取能力.本文提出的方法在Laptop,Restaurant,Twitter 3个公开数据集上对比基准方法E2E-TBSA分别提升了2.3%,1.8%,3.9%的F1值. 展开更多
关键词 目标情感分析 TRANSFORMER 文本表示 多任务学习 注意力机制
下载PDF
基于多头注意力门控卷积网络的特定目标情感分析
5
作者 李浩 樊建聪 《山东科技大学学报(自然科学版)》 CAS 北大核心 2022年第2期99-107,共9页
在特定目标情感分析中,现有的循环神经网络模型存在训练时间长且获取目标相关信息困难的问题。针对该问题,利用注意力机制,提出一种带有位置嵌入的多头注意力门控卷积网络(PE-MAGCN)。首先,模型使用多头注意力层获取目标词与上下文词之... 在特定目标情感分析中,现有的循环神经网络模型存在训练时间长且获取目标相关信息困难的问题。针对该问题,利用注意力机制,提出一种带有位置嵌入的多头注意力门控卷积网络(PE-MAGCN)。首先,模型使用多头注意力层获取目标词与上下文词之间的信息,并额外加入文本和目标词的相对位置嵌入信息,然后采用带有门控机制的卷积神经网络提取与目标词有关的情感特征,最后通过Softmax分类器来识别情感极性倾向。使用SemEval 2014数据集与目前主要用于目标情感识别的模型进行实验对比,结果表明本模型的准确率和F1值较高,可以较好地完成特定目标情感分析任务。 展开更多
关键词 目标情感分析 门控卷积神经网络 多头注意力机制 位置嵌入
下载PDF
基于多注意力卷积神经网络的特定目标情感分析 被引量:140
6
作者 梁斌 刘全 +2 位作者 徐进 周倩 章鹏 《计算机研究与发展》 EI CSCD 北大核心 2017年第8期1724-1735,共12页
特定目标情感分析作为情感分析一个重要的子任务,近年来得到越来越多研究人员的关注.针对在特定目标情感分析中,将注意力机制和LSTM等序列性输入网络相结合的网络模型训练时间长、且无法对文本进行平行化输入等问题,提出一种基于多注意... 特定目标情感分析作为情感分析一个重要的子任务,近年来得到越来越多研究人员的关注.针对在特定目标情感分析中,将注意力机制和LSTM等序列性输入网络相结合的网络模型训练时间长、且无法对文本进行平行化输入等问题,提出一种基于多注意力卷积神经网络(multi-attention convolution neural networks,MATT-CNN)的特定目标情感分析方法.相比基于注意力机制的LSTM网络,该方法可以接收平行化输入的文本信息,大大降低了网络模型的训练时间.同时,该方法通过结合多种注意力机制有效弥补了仅仅依赖内容层面注意力机制的不足,使模型在不需要例如依存句法分析等外部知识的情况下,获取更深层次的情感特征信息,有效识别不同目标的情感极性.最后在SemEval2014数据集和汽车领域数据集(automotive-domain data,ADD)进行实验,取得了比普通卷积神经网络、基于单注意力机制的卷积神经网络和基于注意力机制的LSTM网络更好的效果. 展开更多
关键词 注意力机制 卷积神经网络 特定目标情感分析 深度学习 自然语言处理
下载PDF
基于混合多头注意力和胶囊网络的特定目标情感分析 被引量:9
7
作者 王家乾 龚子寒 +2 位作者 薛云 庞士冠 古东宏 《中文信息学报》 CSCD 北大核心 2020年第5期100-110,共11页
特定目标情感分析旨在判断上下文语境在给定目标词下所表达的情感倾向。对句子语义信息编码时,目前大部分循环神经网络或注意力机制等方法,不能充分捕捉上下文中长距离的语义信息,同时忽略了位置信息的重要性。该文认为句子的语义信息... 特定目标情感分析旨在判断上下文语境在给定目标词下所表达的情感倾向。对句子语义信息编码时,目前大部分循环神经网络或注意力机制等方法,不能充分捕捉上下文中长距离的语义信息,同时忽略了位置信息的重要性。该文认为句子的语义信息、位置信息和多层次间的信息融合对该任务至关重要,从而提出了基于混合多头注意力和胶囊网络的模型。首先,使用多头自注意力分别在位置词向量基础上对上下文长句子和在双向GRU基础上对目标词进行语义编码;然后,使用胶囊网络在语义信息交互拼接基础上进行位置信息编码;最后,在融入原始语义信息基础上,使用多头交互注意力对上下文与目标词并行融合的方法得到情感预测结果。在公开数据集SemEval 2014 Task4和ACL 14 Twitter上的实验表明,该文模型性能较传统深度学习和标准注意力方法有显著提升,验证了模型的有效性和可行性。 展开更多
关键词 特定目标情感分析 胶囊网络 多头注意力
下载PDF
基于自注意力门控图卷积网络的特定目标情感分析 被引量:5
8
作者 陈佳伟 韩芳 王直杰 《计算机应用》 CSCD 北大核心 2020年第8期2202-2206,共5页
基于特定目标的情感分析旨在预测句子中不同方面表达的不同情感倾向。针对之前利用循环神经网络(RNN)结合注意力机制的网络模型所带来的训练参数多且缺少对相关句法约束和长距离词依赖机制解释的问题,提出自注意力门控图卷积网络MSAGCN... 基于特定目标的情感分析旨在预测句子中不同方面表达的不同情感倾向。针对之前利用循环神经网络(RNN)结合注意力机制的网络模型所带来的训练参数多且缺少对相关句法约束和长距离词依赖机制解释的问题,提出自注意力门控图卷积网络MSAGCN。首先,模型采用多头自注意力机制编码上下文词和目标,捕获句子内部的语义关联;然后,采用在句子的依存树上建立图卷积网络的方法获取句法信息以及词的依存关系;最后,通过带有目标嵌入的门控单元(GTRU)获取特定目标的情感。与基线模型相比,所提模型的准确率和调和平均值F1分别提高了1%~3.3%和1.4%~6.3%;同时,预训练的BERT模型也被应用到当前任务中,使模型效果获得了新的提升。实验结果表明所提出的模型能更好掌握用户评论的情感倾向。 展开更多
关键词 特定目标情感分析 自注意力机制 图卷积网络 门控机制 BERT
下载PDF
基于CRT机制混合神经网络的特定目标情感分析 被引量:1
9
作者 孟威 尉永清 刘文锋 《计算机应用研究》 CSCD 北大核心 2020年第2期360-364,共5页
特定目标情感分析的目的是从不同目标词语的角度来预测文本的情感,关键是为给定的目标分配适当的情感词。当句子中出现多个情感词描述多个目标情感的情况时,可能会导致情感词和目标之间的不匹配。由此提出了一个CRT机制混合神经网络用... 特定目标情感分析的目的是从不同目标词语的角度来预测文本的情感,关键是为给定的目标分配适当的情感词。当句子中出现多个情感词描述多个目标情感的情况时,可能会导致情感词和目标之间的不匹配。由此提出了一个CRT机制混合神经网络用于特定目标情感分析,模型使用CNN层从经过BiLSTM变换后的单词表示中提取特征,通过CRT组件生成单词的特定目标表示并保存来自BiLSTM层的原始上下文信息。在三种公开数据集上进行了实验,结果表明,该模型在特定目标情感分析任务中较之前的情感分析模型在准确率和稳定性上有着明显的提升,证明CRT机制能很好地整合CNN和LSTM的优势,这对于特定目标情感分析任务具有重要的意义。 展开更多
关键词 特定目标情感分析 自然语言处理 深度学习 卷积神经网络 长短时记忆网络
下载PDF
用于特定目标情感分析的交互注意力网络模型
10
作者 韩虎 刘国利 《计算机工程与应用》 CSCD 北大核心 2020年第18期104-110,共7页
特定目标情感分析旨在判别评论中不同目标所对应的情感极性。越来越多的研究人员采用基于神经网络的各种方法在特定目标情感分析任务中取得了较好的成绩。但大多数与目标相关的模型只关注目标对上下文建模的影响,而忽略了上下文在目标... 特定目标情感分析旨在判别评论中不同目标所对应的情感极性。越来越多的研究人员采用基于神经网络的各种方法在特定目标情感分析任务中取得了较好的成绩。但大多数与目标相关的模型只关注目标对上下文建模的影响,而忽略了上下文在目标建模中的作用。为了解决上述问题,提出一种交互注意力网络模型(LT-T-TR),该模型将一条评论分为三个部分:包含目标的上文,目标,包含目标的下文。通过注意力机制进行目标与上下文的交互,学习各自的特征表示,从中捕获目标短语和上下文中最重要的情感特征信息。通过在两个标准数据集上的实验验证了模型的有效性。 展开更多
关键词 特定目标情感分析 交互注意力网络 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部