Based on a macroscopic mean-field model associating with the thalamus and cerebral cortex, we investigate how the newly proposed coordinated reset stimulation(CRS) strategy controls the absence seizures as some key pa...Based on a macroscopic mean-field model associating with the thalamus and cerebral cortex, we investigate how the newly proposed coordinated reset stimulation(CRS) strategy controls the absence seizures as some key parameters are changed.Different from the previous stimulation processes, CRS represents the intermittent pulse current administered to different structures including cortex, specific relay nuclei(SRN) and thalamus reticular nucleus(TRN) at different time by using three different micro-electrodes. In particular, we first simulate a typical absence epilepsy activity under the combined effect of the coupling strength between inhibitory interneurons(IIN)-excitatory pyramidal neurons(EPN) and EPN-TRN pathway. And then we explore the control mechanism of different parameters of 3:2 ON-OFF CRS on spike and slow-wave discharges(SWDs)region. Through analyzing the corresponding two-dimensional bifurcation diagrams, we find CRS is effective on controlling absence seizures in proper ranges of stimulation parameters. Especially, the combination of frequency and positive input duration can inhibit the pathological area more effectively. The obtained results might be helpful to study the pathophysiology mechanism of epilepsy, although the CRS's feasibility still needs further exploration in clinical experiments.展开更多
A promising direction in the tanning industry is the use of natural minerals as environmentally friendly technologically efficient materials that are able to adjust and regulate the efficiency of formation of the derm...A promising direction in the tanning industry is the use of natural minerals as environmentally friendly technologically efficient materials that are able to adjust and regulate the efficiency of formation of the dermis structure and the properties of finished leather. The use of finely-dispersed minerals promotes alignment of topographic areas in thickness, increases the yield of leather on the area by avoiding bonding structural elements of the dermis. Changes in the microstructure of the dermis, as a result of mineral filling, contribute to improvement of performance and hygienic properties of finished leather. And the study of the properties of the specified skins should be consistent with the features of operations on their cutting, shoe molding and shoe upper fixing preparations. The most important properties of leather materials, which largely determine the quality of basic technological operations of shoe manufacturing are the deformation properties. Lack of information about relaxation and deformation properties of the leather produced by the new technologies do not allow to predict their ability to form shapes and save it--indicates the relevance of this study. This paper analyzes relaxation and deformation characteristics of natural leather for shoe uppers, filled with natural minerals montmorillonite and zeolite, and the ability to predict their formation and preservation of shape in service. Features of deformation of the skin with mineral content were assessed by determining single-cycle characteristics when attaching to a complete test cycle "loading-unloading-rest" sample. Correlations of elastic and plastic (permanent) deformation have been established, kinetics of changes in linear characteristics of the samples after removal of the load has been investigated. Introduction of dispersions of mineral to the structure of the dermis contributes to the strength of semi-finished leather, increase of the uniformity of mechanical properties in the longitudinal and transverse directions and rise 展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11325208 and 11572015)
文摘Based on a macroscopic mean-field model associating with the thalamus and cerebral cortex, we investigate how the newly proposed coordinated reset stimulation(CRS) strategy controls the absence seizures as some key parameters are changed.Different from the previous stimulation processes, CRS represents the intermittent pulse current administered to different structures including cortex, specific relay nuclei(SRN) and thalamus reticular nucleus(TRN) at different time by using three different micro-electrodes. In particular, we first simulate a typical absence epilepsy activity under the combined effect of the coupling strength between inhibitory interneurons(IIN)-excitatory pyramidal neurons(EPN) and EPN-TRN pathway. And then we explore the control mechanism of different parameters of 3:2 ON-OFF CRS on spike and slow-wave discharges(SWDs)region. Through analyzing the corresponding two-dimensional bifurcation diagrams, we find CRS is effective on controlling absence seizures in proper ranges of stimulation parameters. Especially, the combination of frequency and positive input duration can inhibit the pathological area more effectively. The obtained results might be helpful to study the pathophysiology mechanism of epilepsy, although the CRS's feasibility still needs further exploration in clinical experiments.
文摘A promising direction in the tanning industry is the use of natural minerals as environmentally friendly technologically efficient materials that are able to adjust and regulate the efficiency of formation of the dermis structure and the properties of finished leather. The use of finely-dispersed minerals promotes alignment of topographic areas in thickness, increases the yield of leather on the area by avoiding bonding structural elements of the dermis. Changes in the microstructure of the dermis, as a result of mineral filling, contribute to improvement of performance and hygienic properties of finished leather. And the study of the properties of the specified skins should be consistent with the features of operations on their cutting, shoe molding and shoe upper fixing preparations. The most important properties of leather materials, which largely determine the quality of basic technological operations of shoe manufacturing are the deformation properties. Lack of information about relaxation and deformation properties of the leather produced by the new technologies do not allow to predict their ability to form shapes and save it--indicates the relevance of this study. This paper analyzes relaxation and deformation characteristics of natural leather for shoe uppers, filled with natural minerals montmorillonite and zeolite, and the ability to predict their formation and preservation of shape in service. Features of deformation of the skin with mineral content were assessed by determining single-cycle characteristics when attaching to a complete test cycle "loading-unloading-rest" sample. Correlations of elastic and plastic (permanent) deformation have been established, kinetics of changes in linear characteristics of the samples after removal of the load has been investigated. Introduction of dispersions of mineral to the structure of the dermis contributes to the strength of semi-finished leather, increase of the uniformity of mechanical properties in the longitudinal and transverse directions and rise