期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的白酒酒花实时分类方法
1
作者 刘智萍 崔克彬 《食品与机械》 北大核心 2022年第11期111-116,共6页
目的:解决白酒传统摘酒方法“看花摘酒”的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题。方法:轻量型YOLOv5以YOLOv5s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用Shuffl... 目的:解决白酒传统摘酒方法“看花摘酒”的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题。方法:轻量型YOLOv5以YOLOv5s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征。结果:与YOLOv5s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526。结论:轻量型YOLOv5降低了对硬件配置的要求,可以很好地实现酒花实时检测分类。 展开更多
关键词 白酒酒花 实时分类 YOLOv5 ShuffleNetV2 CBAM注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部