提出具有电阻场板(Resistive field plate,RFP)硅基LDMOS表面电场和击穿电压解析模型。基于求解二维Poisson方程,此模型给出了二维表面电场和电势与器件结构参数和漏偏压关系的解析表达式;计算漂移区长度与击穿电压的关系,提出了一种优...提出具有电阻场板(Resistive field plate,RFP)硅基LDMOS表面电场和击穿电压解析模型。基于求解二维Poisson方程,此模型给出了二维表面电场和电势与器件结构参数和漏偏压关系的解析表达式;计算漂移区长度与击穿电压的关系,提出了一种优化高压器件的有效方法。解析结果与用MEDICI模拟的数值结果吻合较好,验证了模型的准确性,该模型可用于体硅RFPLDMOS的设计优化。展开更多
The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a p...The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.展开更多
文摘提出具有电阻场板(Resistive field plate,RFP)硅基LDMOS表面电场和击穿电压解析模型。基于求解二维Poisson方程,此模型给出了二维表面电场和电势与器件结构参数和漏偏压关系的解析表达式;计算漂移区长度与击穿电压的关系,提出了一种优化高压器件的有效方法。解析结果与用MEDICI模拟的数值结果吻合较好,验证了模型的准确性,该模型可用于体硅RFPLDMOS的设计优化。
文摘The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.