基于电力客户的历史数据,采用客户的基本属性、用电行为、缴费行为、客户信用、行业前景信息等多个维度确定模型所需指标体系。通过指标的相关系数矩阵及信息值(information value,IV)筛选出最终进入模型的指标变量,同时采用最优分组的...基于电力客户的历史数据,采用客户的基本属性、用电行为、缴费行为、客户信用、行业前景信息等多个维度确定模型所需指标体系。通过指标的相关系数矩阵及信息值(information value,IV)筛选出最终进入模型的指标变量,同时采用最优分组的方法对变量进行分组,并进行证据权重转化(weight of evidence,WOE)。基于处理后的数据,运用逻辑回归算法构建用电客户电费风险预测模型,并依据得到的模型结果量化输出变量标准评分卡表,从而将客户划分为高风险、中风险和低风险用户,为不同的用户采取差异化的营销措施提供依据。展开更多
文摘基于电力客户的历史数据,采用客户的基本属性、用电行为、缴费行为、客户信用、行业前景信息等多个维度确定模型所需指标体系。通过指标的相关系数矩阵及信息值(information value,IV)筛选出最终进入模型的指标变量,同时采用最优分组的方法对变量进行分组,并进行证据权重转化(weight of evidence,WOE)。基于处理后的数据,运用逻辑回归算法构建用电客户电费风险预测模型,并依据得到的模型结果量化输出变量标准评分卡表,从而将客户划分为高风险、中风险和低风险用户,为不同的用户采取差异化的营销措施提供依据。