雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电...雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电压信号的小波分解,构建多尺度时频矩阵,利用SVD对该矩阵进行奇异值分解,将信号分解到不同的时频特征子空间,然后获取过电压信号的奇异谱,并计算奇异谱的特征量,将这些特征量作为多级SVM的输入,实现雷电及操作过电压的辨识。对变电站实测5种过电压信号的计算表明:提取的特征量维数低,对过电压信号的电磁干扰具有相对稳定性;采用的识别方法训练次数少,识别率高,能够实现雷电及操作过电压的准确分类。展开更多
Power transformer insulation systems are subjected to many stresses during normal operation due to lightning and switching.If the spectrum of incoming surge voltage matches the winding one,the corresponding resonance ...Power transformer insulation systems are subjected to many stresses during normal operation due to lightning and switching.If the spectrum of incoming surge voltage matches the winding one,the corresponding resonance will be excited.Therefore external transients occurring in power systems might trigger internal overvoltages with large maximum value in transformer windings.Overvoltages having such characteristic have been the root cause of many power transformer failures.The paper presents an approach to the identification of sensitive zones in the transformer windings based on the measurements of overvoltages inside windings and frequency dependences of admittance of the power transformer.The frequency characteristic of the transformer winding may determine those regions in the frequency spectrum.The presented approach might be used both for design optimization and diagnostics of distribution and power transformers.展开更多
文摘雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电压信号的小波分解,构建多尺度时频矩阵,利用SVD对该矩阵进行奇异值分解,将信号分解到不同的时频特征子空间,然后获取过电压信号的奇异谱,并计算奇异谱的特征量,将这些特征量作为多级SVM的输入,实现雷电及操作过电压的辨识。对变电站实测5种过电压信号的计算表明:提取的特征量维数低,对过电压信号的电磁干扰具有相对稳定性;采用的识别方法训练次数少,识别率高,能够实现雷电及操作过电压的准确分类。
文摘Power transformer insulation systems are subjected to many stresses during normal operation due to lightning and switching.If the spectrum of incoming surge voltage matches the winding one,the corresponding resonance will be excited.Therefore external transients occurring in power systems might trigger internal overvoltages with large maximum value in transformer windings.Overvoltages having such characteristic have been the root cause of many power transformer failures.The paper presents an approach to the identification of sensitive zones in the transformer windings based on the measurements of overvoltages inside windings and frequency dependences of admittance of the power transformer.The frequency characteristic of the transformer winding may determine those regions in the frequency spectrum.The presented approach might be used both for design optimization and diagnostics of distribution and power transformers.