In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 ...In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 (x-=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA.h/g, and the capacity retaining rate (S20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA.h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA-h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S20) of the Mg2oNi10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy.展开更多
In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4...In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).展开更多
基金Projects(50871050, 50961009) supported by the National Natural Science Foundation of ChinaProject(2010ZD05) supported by the Natural Science Foundation of Inner Mongolia, ChinaProject(NJzy08071) supported by the Higher Education Science Research Project of Inner Mongolia, China
文摘In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 (x-=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA.h/g, and the capacity retaining rate (S20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA.h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA-h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S20) of the Mg2oNi10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy.
基金Projects(51161015,51371094)supported by National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).