期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于蚁群算法改进One-Class SVM的电力离群用户检测算法研究
被引量:
3
1
作者
黄宇腾
裴旭斌
+2 位作者
孔历波
李波
殷杰
《自动化与仪器仪表》
2019年第5期111-114,共4页
用电采集负荷数据反映了用户的用电特性及用电习惯,通过用电负荷数据分析识别用电离群用户在工业生产中具有重要意义。本文根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对...
用电采集负荷数据反映了用户的用电特性及用电习惯,通过用电负荷数据分析识别用电离群用户在工业生产中具有重要意义。本文根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户。通过对某市纺织业用户的数据进行实践证明,改进的算法能够有效提高收敛速度,并有效地识别离群的用电用户。
展开更多
关键词
蚁群算法
ONE-CLASS
SVM
离群
检测
电力
离群
原文传递
融合连续域蚁群算法One-Class SVM的电力离群用户检测
2
作者
郭玮
《国外电子测量技术》
2020年第6期148-154,共7页
连续域蚁群优化算法是蚁群优化算法的主要研究方向。通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法。在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,...
连续域蚁群优化算法是蚁群优化算法的主要研究方向。通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法。在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户,并对其他算法的测试结果进行了比较和分析,以验证所提出算法的正确性和有效性。
展开更多
关键词
蚁群算法
ONE-CLASS
SVM
离群
检测
电力
离群
下载PDF
职称材料
题名
基于蚁群算法改进One-Class SVM的电力离群用户检测算法研究
被引量:
3
1
作者
黄宇腾
裴旭斌
孔历波
李波
殷杰
机构
国网浙江省电力有限公司信息通信分公司
国网杭州供电有限公司
浙江华云信息科技有限公司
出处
《自动化与仪器仪表》
2019年第5期111-114,共4页
文摘
用电采集负荷数据反映了用户的用电特性及用电习惯,通过用电负荷数据分析识别用电离群用户在工业生产中具有重要意义。本文根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户。通过对某市纺织业用户的数据进行实践证明,改进的算法能够有效提高收敛速度,并有效地识别离群的用电用户。
关键词
蚁群算法
ONE-CLASS
SVM
离群
检测
电力
离群
Keywords
Ant Colony Algorithm
One-Class SVM
outlier detection
electricity outlier
分类号
F426.61 [经济管理—产业经济]
F274
原文传递
题名
融合连续域蚁群算法One-Class SVM的电力离群用户检测
2
作者
郭玮
机构
海南电网有限责任公司
出处
《国外电子测量技术》
2020年第6期148-154,共7页
文摘
连续域蚁群优化算法是蚁群优化算法的主要研究方向。通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法。在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户,并对其他算法的测试结果进行了比较和分析,以验证所提出算法的正确性和有效性。
关键词
蚁群算法
ONE-CLASS
SVM
离群
检测
电力
离群
Keywords
ant colony algorithm
One-Class
SVM
outlier detection
power outlier
分类号
TM76 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于蚁群算法改进One-Class SVM的电力离群用户检测算法研究
黄宇腾
裴旭斌
孔历波
李波
殷杰
《自动化与仪器仪表》
2019
3
原文传递
2
融合连续域蚁群算法One-Class SVM的电力离群用户检测
郭玮
《国外电子测量技术》
2020
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部