电催化二氧化碳还原反应(CO_(2)RR)可以将二氧化碳转化为具有高经济价值的碳氢化合物,被认为是实现碳中和并缓解能源危机的一种有潜力的技术.铜(Cu)作为一种最有应用前景的非贵金属催化剂之一,表现出较高的催化CO_(2)RR转化为多碳产物(C...电催化二氧化碳还原反应(CO_(2)RR)可以将二氧化碳转化为具有高经济价值的碳氢化合物,被认为是实现碳中和并缓解能源危机的一种有潜力的技术.铜(Cu)作为一种最有应用前景的非贵金属催化剂之一,表现出较高的催化CO_(2)RR转化为多碳产物(C_(2+))的活性.然而,电催化CO_(2)还原成C_(2+)产物涉及一个动力学过程缓慢的C-C偶联反应,这导致C_(2+)产物的选择性较低,电流密度低,阻碍了其在工业电解槽中的实际应用.同时,CO_(2)RR产物的选择性不仅取决于热力学速率决定步骤,还取决于传质控制动力学.CO_(2)RR发生在固-气-液三相反应界面,气-液的平衡扩散可以有效抑制析氢竞争反应,进而提高CO_(2)RR的反应效率.本文设计合成了一种富晶界的Cu纳米带催化剂,并构建了气-液平衡扩散的电极结构,用于高效电催化二氧化碳还原制备乙烯(C_(2)H_(4)).以一种碱式碳酸铜(Cu_(2)CO_(3)(OH)_(2))纳米带为前驱体,在原位电化学还原条件下,前驱体中的Cu2+离子获得电子被还原为金属Cu,而释放的CO_(3)2-和OH-混合阴离子调节金属Cu的生长.生成的Cu纳米带由细小的纳米颗粒堆积而成,并暴露出大量的由Cu(111),Cu(200)和Cu(220)晶面形成的富晶界结构(GBs).同时,在CO_(2)RR测试中发现催化剂层的厚度是影响CO_(2)和电解质传质的关键因素.通过调整催化层厚度,CO_(2)和电解质可以同时到达催化剂表面,参与到CO_(2)RR中,实现了气-液平衡扩散,有效抑制了氢析出副反应.在晶界效应和气-液平衡扩散的协同作用下,优化后的电极在电流密度为700 mA cm^(-2)时,对C_(2)H_(4)和C_(2+).产物的法拉第效率分别高达67.2%和82.1%.此外,C_(2)H_(4)的部分电流密度可高达505 mA cm^(-2),高于大多数文献报道的结果.原位拉曼光谱和衰减全内反射表面增强红外吸收光谱结果表明,丰富的晶;界结构增强了CO_(2)在催化剂表面的活化,显著促进了*CO中间体的形�展开更多
文摘电催化二氧化碳还原反应(CO_(2)RR)可以将二氧化碳转化为具有高经济价值的碳氢化合物,被认为是实现碳中和并缓解能源危机的一种有潜力的技术.铜(Cu)作为一种最有应用前景的非贵金属催化剂之一,表现出较高的催化CO_(2)RR转化为多碳产物(C_(2+))的活性.然而,电催化CO_(2)还原成C_(2+)产物涉及一个动力学过程缓慢的C-C偶联反应,这导致C_(2+)产物的选择性较低,电流密度低,阻碍了其在工业电解槽中的实际应用.同时,CO_(2)RR产物的选择性不仅取决于热力学速率决定步骤,还取决于传质控制动力学.CO_(2)RR发生在固-气-液三相反应界面,气-液的平衡扩散可以有效抑制析氢竞争反应,进而提高CO_(2)RR的反应效率.本文设计合成了一种富晶界的Cu纳米带催化剂,并构建了气-液平衡扩散的电极结构,用于高效电催化二氧化碳还原制备乙烯(C_(2)H_(4)).以一种碱式碳酸铜(Cu_(2)CO_(3)(OH)_(2))纳米带为前驱体,在原位电化学还原条件下,前驱体中的Cu2+离子获得电子被还原为金属Cu,而释放的CO_(3)2-和OH-混合阴离子调节金属Cu的生长.生成的Cu纳米带由细小的纳米颗粒堆积而成,并暴露出大量的由Cu(111),Cu(200)和Cu(220)晶面形成的富晶界结构(GBs).同时,在CO_(2)RR测试中发现催化剂层的厚度是影响CO_(2)和电解质传质的关键因素.通过调整催化层厚度,CO_(2)和电解质可以同时到达催化剂表面,参与到CO_(2)RR中,实现了气-液平衡扩散,有效抑制了氢析出副反应.在晶界效应和气-液平衡扩散的协同作用下,优化后的电极在电流密度为700 mA cm^(-2)时,对C_(2)H_(4)和C_(2+).产物的法拉第效率分别高达67.2%和82.1%.此外,C_(2)H_(4)的部分电流密度可高达505 mA cm^(-2),高于大多数文献报道的结果.原位拉曼光谱和衰减全内反射表面增强红外吸收光谱结果表明,丰富的晶;界结构增强了CO_(2)在催化剂表面的活化,显著促进了*CO中间体的形�