从超声图像中准确分割甲状腺区域是甲状腺疾病手术计划的关键之一。本文一方面,针对甲状腺超声3D图像,提出利用边缘指示函数和面积项系数改进的距离正则化水平集演化(Distance Regularized Level Set Evolution,DRLSE)模型来实现甲状腺...从超声图像中准确分割甲状腺区域是甲状腺疾病手术计划的关键之一。本文一方面,针对甲状腺超声3D图像,提出利用边缘指示函数和面积项系数改进的距离正则化水平集演化(Distance Regularized Level Set Evolution,DRLSE)模型来实现甲状腺区域的有效分割;另一方面,根据3D超声图像相邻帧之间甲状腺变化较小的特点,通过计算已分割图像的质心,作为相邻帧图像分割初始点来实现3D图像的自动分割。实验表明,采用本文改进DRLSE模型分割甲状腺3D超声图像,平均分割精度可以达到90%以上。展开更多
文摘从超声图像中准确分割甲状腺区域是甲状腺疾病手术计划的关键之一。本文一方面,针对甲状腺超声3D图像,提出利用边缘指示函数和面积项系数改进的距离正则化水平集演化(Distance Regularized Level Set Evolution,DRLSE)模型来实现甲状腺区域的有效分割;另一方面,根据3D超声图像相邻帧之间甲状腺变化较小的特点,通过计算已分割图像的质心,作为相邻帧图像分割初始点来实现3D图像的自动分割。实验表明,采用本文改进DRLSE模型分割甲状腺3D超声图像,平均分割精度可以达到90%以上。