期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLO v7的生猪群体体温热红外自动检测方法
被引量:
1
1
作者
刘晓文
曾雪婷
+3 位作者
李涛
刘刚
丁向东
米阳
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第S01期267-274,共8页
针对当前生猪规模化养殖过程中基于热红外技术的生猪体温测量效率低的问题,提出了一种基于改进YOLO v7的生猪群体体温检测方法。改进YOLO v7算法在Head层引入VoV-GSCSP结构,降低网络结构复杂度;使用内容感知特征重组(Content-aware reas...
针对当前生猪规模化养殖过程中基于热红外技术的生猪体温测量效率低的问题,提出了一种基于改进YOLO v7的生猪群体体温检测方法。改进YOLO v7算法在Head层引入VoV-GSCSP结构,降低网络结构复杂度;使用内容感知特征重组(Content-aware reassembly of features, CARAFE)替换模型原始上采样算子,提高特征图放大后的品质,强化生猪头部区域有效特征;引入感受野增强模块(Receptive field enhancement module, RFE),增强特征金字塔对生猪头部特征的提取能力。本文改进YOLO v7算法对于生猪头部的检测精确率为87.9%,召回率为92.5%,平均精度均值(Mean average precision, mAP)为94.7%。与原始YOLO v7相比,精确率提高3.6个百分点,召回率提高7.0个百分点,mAP提高3.6个百分点。该方法首先自动检测生猪头部区域,再利用头部最大温度与耳根温度的高相关性,最终自动获取生猪体温。温度提取平均绝对误差仅为0.16℃,检测速度为222 f/s,实现了生猪群体体温的实时精准检测。综合上述试验结果表明,该方法能够自动定位生猪群体的头部区域,满足生猪群体体温测定的高效和高精度要求,为群养生猪体温自动检测提供了有效的技术支撑。
展开更多
关键词
生猪
群体
体温检测
深度学习
改进YOLO
v7
热红外技术
目标检测
下载PDF
职称材料
题名
基于改进YOLO v7的生猪群体体温热红外自动检测方法
被引量:
1
1
作者
刘晓文
曾雪婷
李涛
刘刚
丁向东
米阳
机构
中国农业大学智慧农业系统集成研究教育部重点实验室
中国农业大学农业农村部农业信息获取技术重点实验室
河南丰源和普农牧有限公司
中国农业大学动物科学技术学院
中国农业大学农业农村部动物遗传育种与繁殖重点实验室
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第S01期267-274,共8页
基金
科技创新2030-重大项目(2021ZD0113801)
财政部和农业农村部:国家现代农业产业技术体系项目(CARS-35)
文摘
针对当前生猪规模化养殖过程中基于热红外技术的生猪体温测量效率低的问题,提出了一种基于改进YOLO v7的生猪群体体温检测方法。改进YOLO v7算法在Head层引入VoV-GSCSP结构,降低网络结构复杂度;使用内容感知特征重组(Content-aware reassembly of features, CARAFE)替换模型原始上采样算子,提高特征图放大后的品质,强化生猪头部区域有效特征;引入感受野增强模块(Receptive field enhancement module, RFE),增强特征金字塔对生猪头部特征的提取能力。本文改进YOLO v7算法对于生猪头部的检测精确率为87.9%,召回率为92.5%,平均精度均值(Mean average precision, mAP)为94.7%。与原始YOLO v7相比,精确率提高3.6个百分点,召回率提高7.0个百分点,mAP提高3.6个百分点。该方法首先自动检测生猪头部区域,再利用头部最大温度与耳根温度的高相关性,最终自动获取生猪体温。温度提取平均绝对误差仅为0.16℃,检测速度为222 f/s,实现了生猪群体体温的实时精准检测。综合上述试验结果表明,该方法能够自动定位生猪群体的头部区域,满足生猪群体体温测定的高效和高精度要求,为群养生猪体温自动检测提供了有效的技术支撑。
关键词
生猪
群体
体温检测
深度学习
改进YOLO
v7
热红外技术
目标检测
Keywords
herd of pigs
body temperature measurement
deep learning
improved YOLO v7
thermal infrared technology
target detection
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLO v7的生猪群体体温热红外自动检测方法
刘晓文
曾雪婷
李涛
刘刚
丁向东
米阳
《农业机械学报》
EI
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部