Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the ac...Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.展开更多
A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of...A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.展开更多
A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape ...A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape Town (UCT)". The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95% for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93% and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L- 1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.展开更多
文摘Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.
基金Supported by the Major Science and Technology Program for Water Pollution Contro and Treatment-Crucial Technology Research and Engineering Sample Subject on Municipa Wastewater Treatment Process Updated to Higher Drainage Standard(2008ZX07317-02)Wuhan Water Pollution Control and the Water Environment Administer Technology and Synthetic Sample Project in Cities and Towns(2008ZX07317)
文摘A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.
文摘A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape Town (UCT)". The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95% for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93% and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L- 1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.