期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于声呐图像的类别增量学习方法研究
1
作者 陈鑫哲 梁红 徐微雨 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第2期303-309,共7页
由于声呐图像分辨率低、样本数少,现有的类别增量学习网络对历史任务目标出现了严重的灾难性遗忘问题,导致所有任务目标的平均识别率降低。基于生成重放的框架模式,提出了一种改进的类别增量学习网络,设计搭建新的深层卷积生成对抗网络... 由于声呐图像分辨率低、样本数少,现有的类别增量学习网络对历史任务目标出现了严重的灾难性遗忘问题,导致所有任务目标的平均识别率降低。基于生成重放的框架模式,提出了一种改进的类别增量学习网络,设计搭建新的深层卷积生成对抗网络取代变分自编码器,作为生成重放增量网络的重构模型,提升图像的重构效果;构建新的卷积神经网络取代多层感知机,作为生成重放增量网络的识别网络,提升图像的分类识别性能。结果表明,改进的生成重放增量网络缓解了历史任务目标的灾难性遗忘问题,显著提高所有任务目标的平均识别率显著提高。 展开更多
关键词 声呐图像识别 生成重放 类别增量学习
下载PDF
基于脑启发的类增量学习 被引量:1
2
作者 王伟 张志莹 +3 位作者 郭杰龙 兰海 俞辉 魏宪 《计算机应用研究》 CSCD 北大核心 2023年第3期671-675,688,共6页
现有的类增量学习方法多是采用存储数据或者扩展网络结构,但受内存资源限制不能有效缓解灾难性遗忘问题。针对这一问题,创新地提出基于脑启发生成式重放方法。首先,通过VAE-ACGAN模拟记忆自组织系统,提高生成伪样本的质量;再引入共享参... 现有的类增量学习方法多是采用存储数据或者扩展网络结构,但受内存资源限制不能有效缓解灾难性遗忘问题。针对这一问题,创新地提出基于脑启发生成式重放方法。首先,通过VAE-ACGAN模拟记忆自组织系统,提高生成伪样本的质量;再引入共享参数模块和私有参数模块,保护已提取的特征;最后,针对生成器中的潜在变量使用高斯混合模型,采样特定重放伪样本。在MNIST、Permuted MNIST和CIFAR-10数据集上的实验结果表明,所提方法的分类准确率分别为92.91%、91.44%和40.58%,显著优于其他类增量学习方法。此外,在MNIST数据集上,反向迁移和正向迁移指标达到了3.32%和0.83%,证明该方法实现任务的稳定性和可塑性之间的权衡,有效地防止了灾难性遗忘。 展开更多
关键词 类增量学习 持续学习 灾难性遗忘 脑启发生成重放
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部