Based on the lattice Boltzmann method (LBM), the sedimentations of a single elastic dumbbell in a Newtonian fluid under different initial positions and orientations, and also that of the elastic dumbbells with differe...Based on the lattice Boltzmann method (LBM), the sedimentations of a single elastic dumbbell in a Newtonian fluid under different initial positions and orientations, and also that of the elastic dumbbells with different free lengths of the spring under the same initial conditions have been simulated. All of the numerical results show that the final orientations of the elastic dumbbells are in the same horizontal direction, and the final positions of their centroids are all on the centerline of the tube no matter what the initial positions and orientations of the elastic dumbbell or the free lengths of the spring are. When the elastic dumbbell finally falls down vertically, the two circular cylinders of the elastic dumbbell rotate around their own symmetry-axis respectively, and their angular velocities are equal but opposite to each other. For the sedimentations of the elastic dumbbells with different free lengths of the spring, the shorter of the free length is, the faster the final angular velocity and vertical velocity of the circular cylinder will be.展开更多
A new numerical technique based on a lattice-Boltzmann method is presented for analyzing the fluid flow in stratigraphic porous media near the earth's surface. The results obtained for the relations between porosi...A new numerical technique based on a lattice-Boltzmann method is presented for analyzing the fluid flow in stratigraphic porous media near the earth's surface. The results obtained for the relations between porosity, pressure,and velocity satisfy well the requirements of stratigraphic statistics and hence are helpful for a further study of the evolution of fluid flow in stratigraphic media.展开更多
Thermoelectric properties of bulk and bilayer two-dimensional (2D) MoS2/MoSe2 het- erostructures are investigated using density functional theory in conjunction with semi- classical Boltzmann transport theory. It is...Thermoelectric properties of bulk and bilayer two-dimensional (2D) MoS2/MoSe2 het- erostructures are investigated using density functional theory in conjunction with semi- classical Boltzmann transport theory. It is predicted that the bulk 2D heterostructures could considerably enhance the thermoelectric properties as compared with the bulk MoSe2. The enhancement originates from the reduction in the band gap and the presence of interlayer van der Waals interactions. We therefore propose the 2D MoS2/MoSe2 heterostructures as a possible candidate material for thermoelectric applications.展开更多
文摘Based on the lattice Boltzmann method (LBM), the sedimentations of a single elastic dumbbell in a Newtonian fluid under different initial positions and orientations, and also that of the elastic dumbbells with different free lengths of the spring under the same initial conditions have been simulated. All of the numerical results show that the final orientations of the elastic dumbbells are in the same horizontal direction, and the final positions of their centroids are all on the centerline of the tube no matter what the initial positions and orientations of the elastic dumbbell or the free lengths of the spring are. When the elastic dumbbell finally falls down vertically, the two circular cylinders of the elastic dumbbell rotate around their own symmetry-axis respectively, and their angular velocities are equal but opposite to each other. For the sedimentations of the elastic dumbbells with different free lengths of the spring, the shorter of the free length is, the faster the final angular velocity and vertical velocity of the circular cylinder will be.
文摘A new numerical technique based on a lattice-Boltzmann method is presented for analyzing the fluid flow in stratigraphic porous media near the earth's surface. The results obtained for the relations between porosity, pressure,and velocity satisfy well the requirements of stratigraphic statistics and hence are helpful for a further study of the evolution of fluid flow in stratigraphic media.
文摘Thermoelectric properties of bulk and bilayer two-dimensional (2D) MoS2/MoSe2 het- erostructures are investigated using density functional theory in conjunction with semi- classical Boltzmann transport theory. It is predicted that the bulk 2D heterostructures could considerably enhance the thermoelectric properties as compared with the bulk MoSe2. The enhancement originates from the reduction in the band gap and the presence of interlayer van der Waals interactions. We therefore propose the 2D MoS2/MoSe2 heterostructures as a possible candidate material for thermoelectric applications.