在面向实时态的优化控制中,最优潮流(optimal power flow,OPF)是重要手段。已有最优潮流研究往往假设系统当前的运行状态已知,而实际上系统的真实运行状态无法确知。基于不准确的电网运行状态进行最优潮流控制,其控制结果不满足经济上...在面向实时态的优化控制中,最优潮流(optimal power flow,OPF)是重要手段。已有最优潮流研究往往假设系统当前的运行状态已知,而实际上系统的真实运行状态无法确知。基于不准确的电网运行状态进行最优潮流控制,其控制结果不满足经济上的最优性要求,甚至给电网带来安全性问题。为解决此问题,建立了考虑状态不确定性的最优潮流的随机规划模型,并采用场景分析的方法将其转化为确定性的优化模型,求解该模型,可得到可控资源的调整量,该调整量面向所有可能的运行状态均满足安全性和经济性的要求。针对标准系统进行了算例测试,证明了所提方法的有效性。展开更多
以AP1000核电厂为原型,利用系统程序RELAP5建模模拟AP1000大破口失水事故,并与西屋公司大破口失水事故分析结果进行比较,另采用数学分析与灵敏度分析方法对电厂初始参数进行不确定性量化分析.比较结果显示:RELAP5和西屋公司的LBLOCA(lar...以AP1000核电厂为原型,利用系统程序RELAP5建模模拟AP1000大破口失水事故,并与西屋公司大破口失水事故分析结果进行比较,另采用数学分析与灵敏度分析方法对电厂初始参数进行不确定性量化分析.比较结果显示:RELAP5和西屋公司的LBLOCA(large-break loss of coolant accident)计算结果有较好的一致性,而由数学分析和灵敏度分析处理电厂重要状态参数不确定性后,相对于保守的电厂参数包络LOCA(loss of coolant accident)分析,能额外提供30~50K的热工裕量.展开更多
文摘在面向实时态的优化控制中,最优潮流(optimal power flow,OPF)是重要手段。已有最优潮流研究往往假设系统当前的运行状态已知,而实际上系统的真实运行状态无法确知。基于不准确的电网运行状态进行最优潮流控制,其控制结果不满足经济上的最优性要求,甚至给电网带来安全性问题。为解决此问题,建立了考虑状态不确定性的最优潮流的随机规划模型,并采用场景分析的方法将其转化为确定性的优化模型,求解该模型,可得到可控资源的调整量,该调整量面向所有可能的运行状态均满足安全性和经济性的要求。针对标准系统进行了算例测试,证明了所提方法的有效性。
文摘以AP1000核电厂为原型,利用系统程序RELAP5建模模拟AP1000大破口失水事故,并与西屋公司大破口失水事故分析结果进行比较,另采用数学分析与灵敏度分析方法对电厂初始参数进行不确定性量化分析.比较结果显示:RELAP5和西屋公司的LBLOCA(large-break loss of coolant accident)计算结果有较好的一致性,而由数学分析和灵敏度分析处理电厂重要状态参数不确定性后,相对于保守的电厂参数包络LOCA(loss of coolant accident)分析,能额外提供30~50K的热工裕量.