期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于K-means聚类特征消减的网络异常检测 被引量:22
1
作者 贾凡 严妍 张家琪 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第2期137-142,共6页
针对基础K-means算法在KDD 99数据集中检测罕见攻击效果差且效率低下等问题,该文通过数据统计的方式对数据集中各维度与每类攻击类型的相关分析发现,罕见攻击极易被大量的常见攻击所淹没,而当常见攻击被移去时,这些威胁性更大的罕见攻... 针对基础K-means算法在KDD 99数据集中检测罕见攻击效果差且效率低下等问题,该文通过数据统计的方式对数据集中各维度与每类攻击类型的相关分析发现,罕见攻击极易被大量的常见攻击所淹没,而当常见攻击被移去时,这些威胁性更大的罕见攻击则能够被更好地识别出来。基于此,该文提出一种改进的基于K-means分层迭代的检测算法,通过有针对性的特征选择来降低K-means聚类的数据维度,经过多次属性消减的K-means聚类迭代操作可以更加精准地检测到不同异常类型的攻击。在KDD 99数据集上的实验结果表明:该算法对原基础的K-means检测算法难以检测到的罕见攻击类型U2R/R2L攻击检测率几乎达到99%左右。同时随着每次分层迭代聚类维度近50%的降低,进一步节省了约90%的异常检测时间。 展开更多
关键词 异常检测 K-MEANS 特征消减 U2R R2L
原文传递
基于维度融合与SSA-LSTM的机翼结冰检测 被引量:1
2
作者 聂福印 李强 +1 位作者 黄秋凤 黄玲琳 《传感器与微系统》 CSCD 北大核心 2022年第6期118-121,共4页
高海拔、低温作业下的风电机组常伴有机翼结冰现象。针对风机数据纬度高,传统模型无法挖掘数据间时序关系、收敛速度慢、预测精度低等问题,提出一种基于维度融合优化与长短期记忆(LSTM)网络的结冰检测模型。结合特征消减算法筛选建模特... 高海拔、低温作业下的风电机组常伴有机翼结冰现象。针对风机数据纬度高,传统模型无法挖掘数据间时序关系、收敛速度慢、预测精度低等问题,提出一种基于维度融合优化与长短期记忆(LSTM)网络的结冰检测模型。结合特征消减算法筛选建模特征,通过主成分分析(PCA)降低数据耦合性并引入改进的麻雀搜索算法(ISSA)建立长短期记忆网络结冰检测模型。实验验证,维度融合与改进麻雀搜索算法优化的结冰检测模型判决准确率得到较好的改善,平均具有99.85%的判决准确率。 展开更多
关键词 结冰检测 特征消减 主成分分析 麻雀搜索算法 长短期记忆网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部