现有的医学图像分类算法中普遍存在模型的可解释性问题,将同一卷积神经网络应用到不同的数据集上,分类性能千差万别.针对这一问题,提出了一种基于特征图可视化的医学图像分析方法.在卷积神经网络的特征提取阶段设计4个特征图可视化模型...现有的医学图像分类算法中普遍存在模型的可解释性问题,将同一卷积神经网络应用到不同的数据集上,分类性能千差万别.针对这一问题,提出了一种基于特征图可视化的医学图像分析方法.在卷积神经网络的特征提取阶段设计4个特征图可视化模型,这些模型将具有与网络相同的输入层以及权重,但输出则是一系列特征图.采用SSIM相似度对信息熵最大的特征图评估,分析4个模型提取到的特征信息.在kaggle官网上提供的BreaKHis、Chest X-Ray、Retinal OCT 3类数据集上进行实验,其中基于VGG16网络的特征图可视化模型提取到的特征相似度分别集中在0.95,0.93,0.85,分类精度分别为75.96%,77.19%,99.40%.此外,在ResNet18网络上也有相同的表现.研究表明:分类性能取决于网络的特征提取能力,在保证相似性的前提下,卷积层之间提取到的特征其相似度越低,该数据集在同一网络上往往表现出更好的分类性能.展开更多
随着模式识别和计算机视觉的发展,根据人脸图像自动进行年龄估计在人机交互、安全监控和娱乐等领域已经成为一个非常热门的话题。针对特征冗余及对所提取特征不能充分利用的问题,构建一种基于单模型集成的神经网络框架(Age Estimation F...随着模式识别和计算机视觉的发展,根据人脸图像自动进行年龄估计在人机交互、安全监控和娱乐等领域已经成为一个非常热门的话题。针对特征冗余及对所提取特征不能充分利用的问题,构建一种基于单模型集成的神经网络框架(Age Estimation Framework Based on Single-Model Integration,AEF-SMI)。首先使用5×5、3×3和2×2的级联卷积核提取丰富的空间结构信息,连接不同卷积核组成不同通道,通过集成不同通道获取不同深度卷积激活特征,使网络框架获取高层的语义信息的同时也获取低层边缘纹理信息,最后利用提取到的特征对图片进行年龄估计。实验结果表明,在IMDB-WIKI与Group数据库上,与主流的年龄分类算法相比,AEF-SMI框架得到的准确率更高。展开更多
文摘现有的医学图像分类算法中普遍存在模型的可解释性问题,将同一卷积神经网络应用到不同的数据集上,分类性能千差万别.针对这一问题,提出了一种基于特征图可视化的医学图像分析方法.在卷积神经网络的特征提取阶段设计4个特征图可视化模型,这些模型将具有与网络相同的输入层以及权重,但输出则是一系列特征图.采用SSIM相似度对信息熵最大的特征图评估,分析4个模型提取到的特征信息.在kaggle官网上提供的BreaKHis、Chest X-Ray、Retinal OCT 3类数据集上进行实验,其中基于VGG16网络的特征图可视化模型提取到的特征相似度分别集中在0.95,0.93,0.85,分类精度分别为75.96%,77.19%,99.40%.此外,在ResNet18网络上也有相同的表现.研究表明:分类性能取决于网络的特征提取能力,在保证相似性的前提下,卷积层之间提取到的特征其相似度越低,该数据集在同一网络上往往表现出更好的分类性能.
文摘随着模式识别和计算机视觉的发展,根据人脸图像自动进行年龄估计在人机交互、安全监控和娱乐等领域已经成为一个非常热门的话题。针对特征冗余及对所提取特征不能充分利用的问题,构建一种基于单模型集成的神经网络框架(Age Estimation Framework Based on Single-Model Integration,AEF-SMI)。首先使用5×5、3×3和2×2的级联卷积核提取丰富的空间结构信息,连接不同卷积核组成不同通道,通过集成不同通道获取不同深度卷积激活特征,使网络框架获取高层的语义信息的同时也获取低层边缘纹理信息,最后利用提取到的特征对图片进行年龄估计。实验结果表明,在IMDB-WIKI与Group数据库上,与主流的年龄分类算法相比,AEF-SMI框架得到的准确率更高。