期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
自动调整样本和特征权值的模糊聚类算法 被引量:6
1
作者 李凯 高岩 曹喆 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第9期1554-1560,共7页
针对模糊c均值聚类算法对特征噪声和样本噪声较敏感的缺陷,依据特征和样本对聚类的不同影响,将特征权值和样本权值引入到模糊c均值聚类的目标函数,并获得了一个模糊聚类模型。利用拉格朗日方法对该模型求解,提出了样本和特征权值自动调... 针对模糊c均值聚类算法对特征噪声和样本噪声较敏感的缺陷,依据特征和样本对聚类的不同影响,将特征权值和样本权值引入到模糊c均值聚类的目标函数,并获得了一个模糊聚类模型。利用拉格朗日方法对该模型求解,提出了样本和特征权值自动调整的模糊聚类算法;同时,将核策略引入到该模糊聚类模型,提出了样本和特征权值自动调整的核模糊聚类算法。实验结果表明该方法对含有特征噪声与样本噪声数据的聚类具有较好的处理能力,为特征提取与样本选取等问题提供了一种可行的途径。 展开更多
关键词 模糊聚类 目标函数 样本与特征加权 样本加权 特征加权 核方法 特征噪声 样本噪声
下载PDF
HFC网络反向噪声的现场分析及控制解决方法(三)
2
作者 刘光华 何江 《世界宽带网络》 2002年第6期58-60,共3页
关键词 HFC网络 前端汇聚噪声频谱 频谱分析 反向汇聚噪声 特征噪声 反向汇聚噪声频谱 规范化反向通路调试
原文传递
基于AHSVM-WOA的钢板表面缺陷分类算法 被引量:1
3
作者 冯瑶 储茂祥 +1 位作者 邓鑫 齐新雨 《安徽大学学报(自然科学版)》 CAS 北大核心 2020年第4期65-71,共7页
为了降低标签和特征噪声对钢板表面缺陷分类的影响,提出一种抗噪声的超球体支持向量机(anti-noise hypersphere support vector machine,简称AHSVM)分类模型.鉴于鲸鱼优化算法(whale optimization algorithm,简称WOA)能对AHSVM分类模型... 为了降低标签和特征噪声对钢板表面缺陷分类的影响,提出一种抗噪声的超球体支持向量机(anti-noise hypersphere support vector machine,简称AHSVM)分类模型.鉴于鲸鱼优化算法(whale optimization algorithm,简称WOA)能对AHSVM分类模型的参数进行寻优且能提高运行效率,提出AHSVM与WOA结合的AHSVM-WOA算法.4种分类算法对6类热轧钢板表面缺陷的分类结果表明,AHSVM-WOA算法有良好的分类效果,在抑制标签和特征噪声方面性能优良,缩短了参数选择的时间. 展开更多
关键词 钢板表面缺陷 超球体支持向量机 标签噪声 特征噪声 鲸鱼优化算法
下载PDF
基于特征噪声加权的特征权重算法改进
4
作者 赵航 杨天奇 赵小厦 《微型机与应用》 2012年第3期66-68,共3页
特征权重算法TF-IDF是文本分类的重要算法之一,该算法IDF值容易受特征噪声影响出现波动。提出一种基于特征噪声加权的特征权重改进算法,该算法通过分析噪声特征的分布特点,对不能准确表达文档真实意思的特征噪声进行加权,降低特征噪声对... 特征权重算法TF-IDF是文本分类的重要算法之一,该算法IDF值容易受特征噪声影响出现波动。提出一种基于特征噪声加权的特征权重改进算法,该算法通过分析噪声特征的分布特点,对不能准确表达文档真实意思的特征噪声进行加权,降低特征噪声对IDF的影响,最终有效地提高算法的精度和健壮性。 展开更多
关键词 向量空间模型 文本分类 特征噪声 特征权重 健壮性
下载PDF
基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法 被引量:8
5
作者 董绍江 裴雪武 +4 位作者 汤宝平 田科位 朱朋 李洋 赵兴新 《机械工程学报》 EI CAS CSCD 北大核心 2021年第15期105-115,共11页
针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方... 针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。 展开更多
关键词 特征噪声能量比 滚动轴承性能退化评估 早期故障检测 改进深度残差收缩网络 寿命状态识别
原文传递
动态调整灰色关联分析方法在轴承早期退化在线识别中的应用 被引量:3
6
作者 裴雪武 董绍江 +2 位作者 方能炜 邢镔 胡小林 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第5期61-70,共10页
针对现有数据驱动型方法在滚动轴承早期退化识别中存在敏感度低、误警率高的问题,提出一种面向瞬态机械装备健康监测的动态调整灰色关联分析(DAGIA)方法。该方法首先采用希尔伯特(Hilbert)变换对滚动轴承振动数据进行幅度解调得到包络... 针对现有数据驱动型方法在滚动轴承早期退化识别中存在敏感度低、误警率高的问题,提出一种面向瞬态机械装备健康监测的动态调整灰色关联分析(DAGIA)方法。该方法首先采用希尔伯特(Hilbert)变换对滚动轴承振动数据进行幅度解调得到包络信号。为了削弱分辨系数取值的影响以凸显关联度值的区分程度,将可以表征轴承退化信息强弱的特征噪声能量比(FNER)指标引入传统灰色关联分析(TGIA)中动态调整分辨系数。然后,提取轴承运行初期的第一组数据作为参考数据,计算其余数据和参考数据的动态灰色关联度并构建轴承性能衰退指标。最后,根据正常样本并结合切比雪夫不等式设置控制线瞬态识别滚动轴承早期退化起始位置。利用IMS和XJTU-SY数据库完成对轴承早期退化瞬态识别,结果表明,所提方法可以瞬态识别轴承早期退化位置,误报警逼近于0,兼具敏感性和鲁棒性,有利于设备维护人员更好掌握滚动轴承的运行状态。 展开更多
关键词 轴承 特征噪声能量比 动态调整灰色关联分析 性能衰退指标 早期退化在线瞬态识别
下载PDF
HFC网络反向噪声的现场分析及控制解决方法(一) 被引量:1
7
作者 刘光华 何江 《世界宽带网络》 2002年第3期50-52,64,共4页
关键词 HFC网络 反向噪声 频谱特征噪声 规范化反向通路调试
原文传递
结合特征定位噪声表征的单应矩阵精确鲁棒估计 被引量:3
8
作者 赵春阳 赵怀慈 《光学精密工程》 EI CAS CSCD 北大核心 2015年第8期2357-2368,共12页
针对基于特征匹配的单应矩阵估计方法的特征定位噪声的各向异性非同分布对其精度和鲁棒性的影响,提出了一种结合特征定位噪声表征的单应矩阵估计方法。该方法采用协方差矩阵来表征特征点定位噪声;基于协方差矩阵加权采样一致性(CWSAC... 针对基于特征匹配的单应矩阵估计方法的特征定位噪声的各向异性非同分布对其精度和鲁棒性的影响,提出了一种结合特征定位噪声表征的单应矩阵估计方法。该方法采用协方差矩阵来表征特征点定位噪声;基于协方差矩阵加权采样一致性(CWSAC)的内点检验方法来提高单应矩阵估计的鲁棒性。最后,提出一种单应矩阵高精度估计算法——协方差加权Levenberg-Marquardt(CW L-M)法。该方法结合协方差矩阵重新定义优化目标函数,提高了单应矩阵的估计精度。基于仿真数据和真实图像的实验表明,在相同定位噪声和内点比例条件下,本文算法的估计精度显著优于RANSAC(RANdom SAmple Consensus)、LMedS(Least Median of Squares),PROSAC(PROgressive SAmple Consensus)、M-SAC(M-estimator SAmple Consensus)和MLESAC(Maximum Likelihood SAmple Consensus)等传统算法,投影均方误差比次优方法降低了3%-21%。另外,本文方法对定位噪声和内点比例变化均具有较好的鲁棒性。 展开更多
关键词 单应矩阵估计 特征定位噪声 协方差加权 随机采样一致(RANSAC) LEVENBERG-MARQUARDT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部