期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于特征参量优选与多算法联合的局部放电模式识别方法
被引量:
4
1
作者
王世强
薛建议
+2 位作者
胡海燕
刘全桢
穆海宝
《高压电器》
CAS
CSCD
北大核心
2018年第10期112-119,共8页
电力设备中,不同类型的放电因放电功率、能量的差异对设备绝缘的损害能力存在差异,即对绝缘的危害程度不同,确定局部放电类型是放电危险度评估的基础。文中对典型缺陷条件下的局部放电谱图提取了基本参量及统计参量等多种特征指纹;为了...
电力设备中,不同类型的放电因放电功率、能量的差异对设备绝缘的损害能力存在差异,即对绝缘的危害程度不同,确定局部放电类型是放电危险度评估的基础。文中对典型缺陷条件下的局部放电谱图提取了基本参量及统计参量等多种特征指纹;为了降低识别参量的维度,定义了特征向量可分性评估准则,并使用浮动前向搜索算法选取了可分性最优的9组特征参量;分别使用主成分分析、线性可分性分析、核主成分分析及通用可分性分析4种方法将特征向量降为2维,结果表明,使用通用可分性分析降维后特征参量可分性最优。之后,提出了多算法联合的模式识别分类器,通过对比最小距离法、人工神经网络及支持向量机,3种方法确定最终识别结果,实验结果表明,该分类器识别准确率达95.8%。最后将所提出模式识别方法应用于现场局部放电缺陷类型识别,通过设备实验结果对比验证了识别结果的准确性。
展开更多
关键词
局部放电
模式识别
特征
参量
典型缺陷
特征
优选
与
降
维
下载PDF
职称材料
题名
基于特征参量优选与多算法联合的局部放电模式识别方法
被引量:
4
1
作者
王世强
薛建议
胡海燕
刘全桢
穆海宝
机构
中国石化安全工程研究院化学品安全控制国家重点实验室
西安交通大学电力设备电气绝缘国家重点实验室
出处
《高压电器》
CAS
CSCD
北大核心
2018年第10期112-119,共8页
文摘
电力设备中,不同类型的放电因放电功率、能量的差异对设备绝缘的损害能力存在差异,即对绝缘的危害程度不同,确定局部放电类型是放电危险度评估的基础。文中对典型缺陷条件下的局部放电谱图提取了基本参量及统计参量等多种特征指纹;为了降低识别参量的维度,定义了特征向量可分性评估准则,并使用浮动前向搜索算法选取了可分性最优的9组特征参量;分别使用主成分分析、线性可分性分析、核主成分分析及通用可分性分析4种方法将特征向量降为2维,结果表明,使用通用可分性分析降维后特征参量可分性最优。之后,提出了多算法联合的模式识别分类器,通过对比最小距离法、人工神经网络及支持向量机,3种方法确定最终识别结果,实验结果表明,该分类器识别准确率达95.8%。最后将所提出模式识别方法应用于现场局部放电缺陷类型识别,通过设备实验结果对比验证了识别结果的准确性。
关键词
局部放电
模式识别
特征
参量
典型缺陷
特征
优选
与
降
维
Keywords
partial discharge
pattern recognition
feature parameter
typical defects
feature selection and dimension reduction
分类号
TM855 [电气工程—高电压与绝缘技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于特征参量优选与多算法联合的局部放电模式识别方法
王世强
薛建议
胡海燕
刘全桢
穆海宝
《高压电器》
CAS
CSCD
北大核心
2018
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部