期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BagR-CNN检测模型的物联网网关安全加固方法 被引量:3
1
作者 赵静 李俊 +4 位作者 龙春 吴玉磊 万巍 魏金侠 王显珉 《高技术通讯》 CAS 2023年第1期1-14,共14页
物联网(IoT)网关作为多种网络间异构数据传输与交换的关键节点近年来长期遭受大规模攻击,可靠性差,大规模流量处理延时大、抗攻击能力差等问题显著。而现有对物联网网关的可靠性研究主要集中在加密技术和可信认证机制方面,没有解决大规... 物联网(IoT)网关作为多种网络间异构数据传输与交换的关键节点近年来长期遭受大规模攻击,可靠性差,大规模流量处理延时大、抗攻击能力差等问题显著。而现有对物联网网关的可靠性研究主要集中在加密技术和可信认证机制方面,没有解决大规模攻击环境下物联网的可靠性及安全性问题。因此,本文提出了基于BagR-CNN检测模型的物联网网关安全加固方法,设计了可低功耗集成在物联网网关上并能够快速检测出大规模多步骤攻击的模型。首先,不同于传统的单一流量分类,本方法将相关流量聚合到一个包中,并利用基于信息熵相关性的特征增强算法提高检测准确率。其次,区别于传统的特征提取与约简方法,本文提出基于包内相似度的特征扩展方法,挖掘出隐藏的关联信息并能保证包内数据在噪声扰动下的不变性。最后,本文提出基于高斯混合模型(GMM)的特征压缩算法,将聚合包映射为一维向量并由此训练简单的卷积神经网络,以提高检测效率。实验结果表明,基于BagR-CNN检测模型在准确率、召回率和F1值等方面均优于目前对于大规模多步骤攻击的检测方法。同时,在模拟网关上运行时平均CPU利用率(不使用GPU)低于20%,证明该方法适合集成到网关而不影响网关正常的数据传输工作。 展开更多
关键词 联网(iot)网关 安全性 可靠性 大规模攻击 聚合包表示 卷积神经网络(CNN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部