期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的燃气表信息自动识别方法研究
1
作者
毛莉君
张文灏
《微型电脑应用》
2024年第2期167-170,共4页
提出了一种基于改进的LeNet-5卷积神经网络的识别方法。通过加装摄像头和通信线路的方式,实时采集图像信息,并对图像进行部分预处理。引入Gabor滤波器、ReLU-Softplus函数、SVM分类器等优化传统LeNet-5模型,并根据图像数据的不均衡性,运...
提出了一种基于改进的LeNet-5卷积神经网络的识别方法。通过加装摄像头和通信线路的方式,实时采集图像信息,并对图像进行部分预处理。引入Gabor滤波器、ReLU-Softplus函数、SVM分类器等优化传统LeNet-5模型,并根据图像数据的不均衡性,运用Grid Loss函数优化CNN网络,由此,实现燃气表自动化识别方法的构建。在Caffe深度学习框架下进行实验测评,结果表明该方法整体的识别准确性高达99.60%、整个样本集及单幅字码的训练总时间均优于其他识别方法,且对于不完整表码字的识别准确率也达到了99.21%。
展开更多
关键词
燃气表
信息
自动识别
LeNet-5模型
Grid
Loss函数
下载PDF
职称材料
题名
基于卷积神经网络的燃气表信息自动识别方法研究
1
作者
毛莉君
张文灏
机构
西安培华学院
西安鹏岳电子科技有限公司
出处
《微型电脑应用》
2024年第2期167-170,共4页
文摘
提出了一种基于改进的LeNet-5卷积神经网络的识别方法。通过加装摄像头和通信线路的方式,实时采集图像信息,并对图像进行部分预处理。引入Gabor滤波器、ReLU-Softplus函数、SVM分类器等优化传统LeNet-5模型,并根据图像数据的不均衡性,运用Grid Loss函数优化CNN网络,由此,实现燃气表自动化识别方法的构建。在Caffe深度学习框架下进行实验测评,结果表明该方法整体的识别准确性高达99.60%、整个样本集及单幅字码的训练总时间均优于其他识别方法,且对于不完整表码字的识别准确率也达到了99.21%。
关键词
燃气表
信息
自动识别
LeNet-5模型
Grid
Loss函数
Keywords
gas meter information
automatic recognition
LeNet-5 model
Grid Loss function
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的燃气表信息自动识别方法研究
毛莉君
张文灏
《微型电脑应用》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部