目的:研发冷冻南美白对虾虾仁的抗冻保水剂并探索其应用效果。方法:以冷冻虾仁解冻损失率、明度、p H值、肌原纤维蛋白含量、Ca^(2+)-ATPase活性、弹性和咀嚼性为评价指标,以焦磷酸钠为阳性对照,研究卡拉胶寡糖对冷冻虾仁的抗冻保水效...目的:研发冷冻南美白对虾虾仁的抗冻保水剂并探索其应用效果。方法:以冷冻虾仁解冻损失率、明度、p H值、肌原纤维蛋白含量、Ca^(2+)-ATPase活性、弹性和咀嚼性为评价指标,以焦磷酸钠为阳性对照,研究卡拉胶寡糖对冷冻虾仁的抗冻保水效果及微观组织结构的影响情况。结果:卡拉胶寡糖和焦磷酸钠浸泡处理能有效抑制冷冻虾仁解冻损失率的增加,减少肌原纤维蛋白含量和Ca^(2+)-ATPase活性的下降,对虾仁pH值、明度和质构特性的保护效果显著,且3g/100 m L处理组的保护效果整体高于1 g/100 m L处理组;同时,3 g/100 m L卡拉胶寡糖处理对虾仁肌原纤维蛋白的保护效果显著高于3 g/100 m L焦磷酸钠处理(P<0.05);微观结构观察发现,冻藏6周后,3 g/100 m L卡拉胶寡糖处理组虾仁肌纤维排列紧密,完整性较好,与新鲜冷冻虾仁组织结构较为相近。结论:3 g/100 m L卡拉胶寡糖浸泡处理有利于冷冻虾仁品质的保持。研究结果可为开发一种低甜味、低热量的虾仁抗冻剂提供参考。展开更多
The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests ...The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests indicate that satisfactory separation can be achieved within the pH range from 2.5 to 6 using SPH to depress the galena, but not the chalcopyrite when O-isopropyl-N-ethyl thionocarbamate (IPETC) is used as the collector. The electrophoretic mohilities of both the minerals dramatically become negatively charged following SPH adsorption in the pH range from 2.5 to 12, The infrared spectral analysis suggests that chemical adsorption occurs on galena surface treated by SPH, indicating that a chelate complex has formed. At weakly acidic pH values, the adsorption density of IPETC onto galena is significantly reduced in the presence of SPH. However, the amount of IPETC adsorbed onto chalcopyrite almost remains at the same level. Since the observed adsorption density of IEPTC onto chalcopyrite is quite high compared to galena, the observed flotation results are explained. A possible mechanism for the interaction between the two sulphide minerals and SPH is discussed.展开更多
文摘目的:研发冷冻南美白对虾虾仁的抗冻保水剂并探索其应用效果。方法:以冷冻虾仁解冻损失率、明度、p H值、肌原纤维蛋白含量、Ca^(2+)-ATPase活性、弹性和咀嚼性为评价指标,以焦磷酸钠为阳性对照,研究卡拉胶寡糖对冷冻虾仁的抗冻保水效果及微观组织结构的影响情况。结果:卡拉胶寡糖和焦磷酸钠浸泡处理能有效抑制冷冻虾仁解冻损失率的增加,减少肌原纤维蛋白含量和Ca^(2+)-ATPase活性的下降,对虾仁pH值、明度和质构特性的保护效果显著,且3g/100 m L处理组的保护效果整体高于1 g/100 m L处理组;同时,3 g/100 m L卡拉胶寡糖处理对虾仁肌原纤维蛋白的保护效果显著高于3 g/100 m L焦磷酸钠处理(P<0.05);微观结构观察发现,冻藏6周后,3 g/100 m L卡拉胶寡糖处理组虾仁肌纤维排列紧密,完整性较好,与新鲜冷冻虾仁组织结构较为相近。结论:3 g/100 m L卡拉胶寡糖浸泡处理有利于冷冻虾仁品质的保持。研究结果可为开发一种低甜味、低热量的虾仁抗冻剂提供参考。
基金Financial support from the Foundation of the State Key Laboratory of Comprehensive Utilization of Low-Grade Ores (Zijin Mining Group Co., Ltd.)the National Basic Research Program of China(No. 2010CB630905)
文摘The effect of sodium pyrophosphate (SPH) on the separation of chalcopyrite from galena was examined through flotation, adsorption, electrokinetic studies and infrared spectral analysis. Differential flotation tests indicate that satisfactory separation can be achieved within the pH range from 2.5 to 6 using SPH to depress the galena, but not the chalcopyrite when O-isopropyl-N-ethyl thionocarbamate (IPETC) is used as the collector. The electrophoretic mohilities of both the minerals dramatically become negatively charged following SPH adsorption in the pH range from 2.5 to 12, The infrared spectral analysis suggests that chemical adsorption occurs on galena surface treated by SPH, indicating that a chelate complex has formed. At weakly acidic pH values, the adsorption density of IPETC onto galena is significantly reduced in the presence of SPH. However, the amount of IPETC adsorbed onto chalcopyrite almost remains at the same level. Since the observed adsorption density of IEPTC onto chalcopyrite is quite high compared to galena, the observed flotation results are explained. A possible mechanism for the interaction between the two sulphide minerals and SPH is discussed.