The microstructure and mechanical properties of as-cast and as-extruded Mg-Zn-Y alloy (Mg-11%Zn-0.9%Y, mass fraction) containing Mg3YZn6 quasicrystal were studied. The eutectic icosahedral quasicrystal phase (I-ph...The microstructure and mechanical properties of as-cast and as-extruded Mg-Zn-Y alloy (Mg-11%Zn-0.9%Y, mass fraction) containing Mg3YZn6 quasicrystal were studied. The eutectic icosahedral quasicrystal phase (I-phase) is broken and almost distributes along the extrusion direction, and fine I-phase with nano-size is precipitated during the extrusion. The α-Mg matrix grains are refined due to recrystallization occuring during the hot extrusion. Some {1012} twins are observed in the extruded ZW1101 alloy. And {0002}〈1010〉 fiber texture is formed in matrix alloys after hot extrusion. The extruded alloy exhibits high strength in combination with large elongation at room temperature. The strengthening mechanism of the as-extruded alloy was discussed.展开更多
文摘The microstructure and mechanical properties of as-cast and as-extruded Mg-Zn-Y alloy (Mg-11%Zn-0.9%Y, mass fraction) containing Mg3YZn6 quasicrystal were studied. The eutectic icosahedral quasicrystal phase (I-phase) is broken and almost distributes along the extrusion direction, and fine I-phase with nano-size is precipitated during the extrusion. The α-Mg matrix grains are refined due to recrystallization occuring during the hot extrusion. Some {1012} twins are observed in the extruded ZW1101 alloy. And {0002}〈1010〉 fiber texture is formed in matrix alloys after hot extrusion. The extruded alloy exhibits high strength in combination with large elongation at room temperature. The strengthening mechanism of the as-extruded alloy was discussed.