The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMO...The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMORPH) are two important multi-satellite precipitation products in TRMM-era and perform important functions in GPM-era. Both TMPA and CMORPH systems simultaneously upgraded their retrieval algorithms and released their latest version of precipitation data in 2013. In this study, the latest TMPA and CMORPH products (i.e., Version-7 real-time TMPA (T-rt) and gauge-adjusted TMPA (T-adj), and Version- 1.0 real-time CMORPH (C-rt) and Version-l.0 gauge-adjusted CMORPH (C-adj)) are evaluated and intercompared by using independent rain gauge observations for a 12-year (2000--2011) period over two typical basins in China with different geographical and climate conditions. Results indicate that all TMPA and CMORPH products tend to overestimate precipitation for the high-latitude semiarid Laoha River Basin and underestimate it for the low-latitude humid Mishui Basin. Overall, the satellite precipitation products exhibit superior performance over Mishui Basin than that over Laoha River Basin. The C-adj presents the best performance over the high-latitude Laoha River Basin, whereas T-adj showed the best performance over the low-latitude Mishui Basin. The two gauge-adjusted products demonstrate potential in water resource management. However, the accuracy of two real-time satellite precipitation products demonstrates large variability in the two validation basins. The C-rt reaches a similar accuracy level with the gauge-adjusted satellite precipitation products in the high-latitude Laoha River Basin, and T-rt performs well in the low-latitude Mishui Basin. The study also reveals that all satellite precipitation products obviously overestimate light rain amounts and events over Laoha River Basin, whereas they underestimate the amount and events over Mishui Basin. The findings of the 展开更多
Using 12 years of data from the Tropical Rainfall Measuring Mission(TRMM)-based Precipitation Radar(PR),spatial and diurnal variations of deep convective systems(DCSs)over the Asian monsoon region are analyzed.The DCS...Using 12 years of data from the Tropical Rainfall Measuring Mission(TRMM)-based Precipitation Radar(PR),spatial and diurnal variations of deep convective systems(DCSs)over the Asian monsoon region are analyzed.The DCSs are defined by a 20 dBZ echo top extending 14 km.The spatial distribution of DCSs genesis is also discussed,with reference to the National Centers for Environmental Prediction(NCEP)reanalysis data.The results show that DCSs occur mainly over land.They concentrate in south of 20°N during the pre-monsoon season,and then move distinctly to mid-latitude regions,with the most active region on the south slope of the Himalayas during monsoon season.DCSs over the Tibetan Plateau are more frequent than those in central-eastern China,but smaller in horizontal scale and weaker in convective intensity.DCSs in central-eastern China have more robust updrafts and generate more lightning flashes than in other Asian monsoon regions.The horizontal scale of DCSs over the ocean is larger than that over the other regions,and the corresponding minimum infrared(IR)brightness temperature is lower,whereas the convective intensity is weaker.Continental DCSs are more common from noon through midnight,and DCSs over the Tibetan Plateau are more frequently from noon through evening.Oceanic DCSs frequency has a weaker diurnal cycle with dawn maximum,and diurnal variation of DCSs over the tropical maritime continent is consistent with that over the continent.展开更多
Based on 10 years precipitation data from Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 and the best track data from China Meteorological Administration (CMA), t...Based on 10 years precipitation data from Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 and the best track data from China Meteorological Administration (CMA), the seasonal, monthly and annual contribution of tropical cyclone (TC) precipitation to the total rainfall are analyzed over the Western North Pacific (WNP) during 1998 to 2007 from May to December. The results show that: (1) TC seasonal rainfall contribution ranges from 4% in inland regions to above 40% in ocean-regions of 15°N-25°N. TCs at higher categories contribute much more to the total precipitation. (2) On monthly scale, TCs contribute 60% to the total rainfall regionally during whole TC season, which is the maximum contribution. The peak contribution of TC rainfall averaged in multi-months of the ten years occurs in August (28%) over the whole ocean impacted by TC and in December (23%) over the whole land impacted by TC, respectively. (3) On annual scale, the maximum contribution of TC precipitation to the total rainfall are in 2004 (-30%) over ocean and in 1998 (-20%) over land, respectively. (4) The contribution of TC precipitation to the total rainfall increases 6% (decreases 6%) in El Nino (La Nifia) years compared with neutral years.展开更多
The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Tw...The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Two pairs of experiments were made, spectral nudging (SP) and non-spectral nudging (NOSP), with five members in each group. The members were distinguished by different initial times, and the analysis was based on the ensemble mean of the two simulation pairs. The SP was able to constrain error growth in large-scale circulation in upper-level, during simulation, and generate realistic regional scale patterns. The main focus was the model ability to simulate precipitation. The Tropical Rainfall Measuring Mission (TRMM) 3B42 product was used for precipitation verification. Mean precipitation magnitude was generally overestimated by WRF. Nevertheless, SP simulations suppressed overestimation relative to the NOSP experiments. Compared to TRMM, SP also improved model simulation of precipitation in spatial and temporal distributions, with the ability to reproduce movement of rainbands. However, extreme precipitation events were suppressed in the SP simulations.展开更多
Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) durin...Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.展开更多
With the unprecedented spaceborne precipitation radar(PR),the Tropical Rainfall Measuring Mission(TRMM) satellite has collected high-quality precipitation measurements for over ten years.The TRMM/PR data are nowadays ...With the unprecedented spaceborne precipitation radar(PR),the Tropical Rainfall Measuring Mission(TRMM) satellite has collected high-quality precipitation measurements for over ten years.The TRMM/PR data are nowadays extensively exploited in numerous meteorological and hydrological fields.Yet an artificial orbit boost of the TRMM satellite in August 2001 modulated the observation parameters,which inevitably affects climatological applications of the PR data and needs to be clarified.This study investigates the orbit boost effects of the TRMM satellite on the PR-derived precipitation characteristics.Both the potential impacts on precipitation frequency(PF) and precipitation intensity(PI) are carefully analyzed.The results show that the total PF decreases by 8.3% and PI increases by 4.0% over the tropics after the orbit boost.Such changes significantly exceed the natural variabilities and imply the strong effects of orbit boost on precipitation characteristics.The impacts on stratiform precipitation and convective precipitation are inconsistent,which is attributed to their distinct precipitation features.Further analysis reveal that the increased PI of stratiform precipitation is mainly due to the decreased frequencies of light precipitation,while the semi-constant PI of convective precipitation is caused by the concurrently decreased frequencies of light and heavy precipitation.A modification is applied to the post-boost PR precipitation data to retrieve the actual trends of tropical precipitation characteristics.It is found that the PI of total-precipitation approximately keeps invariable from 1998 to 2005.The total PF has no obvious trend over tropical oceans but decreases considerably over tropical lands.展开更多
Two typical satellite sea surface temperature (SST) datasets, from the Multi-functional Transport Satellite (MTSAT) and Tropical Rainfall Measuring Mission Microwave Imager (TMI), were evaluated for the East China Sea...Two typical satellite sea surface temperature (SST) datasets, from the Multi-functional Transport Satellite (MTSAT) and Tropical Rainfall Measuring Mission Microwave Imager (TMI), were evaluated for the East China Sea, Yellow Sea, and Bohai Sea throughout 2008. Most monthly-mean availabilities of MTSAT are higher than those of TMI, whereas the seasonal variation of the latter is less than that of the former. The analysis on the one-year data shows that the annual mean availability of MTSAT (61%) is greater than that of TMI (56%). This is mainly because MTSAT is a geostationary satellite, which achieves longer observation than the sun-synchronous TMI. The daily availability of TMI (28%-75%) is more constant than that of MTSAT (9%-93%). The signal of infrared sensors on MTSAT is easily disturbed on cloudy days. In contrast, the TMI microwave sensor can obtain information through clouds. Based on in-situ SSTs, the SST accuracy of TMI is superior to that of MTSAT. In 2008, the root mean square (RMS) error of TMI and MTSAT were 0.77 K and 0.84 K, respectively. The annual mean biases were 0.14 K (TMI) and -0.31 K (MTSAT). To attain a high availability of SSTs, we propose a fusion method to merge both SSTs. The annual mean availability of fusion SSTs increases 17% compared to MTSAT. In addition, the availabilities of the fusion SSTs become more constant. The annual mean RMS and bias of fusion SSTs (0.78 K and -0.06 K, respectively) are better than those of MTSAT (0.84 K and -0.31 K).展开更多
选取热带测雨卫星(Tropical Rainfall Measuring Mission,TRMM)微波成像仪(TRMM Microwave Imager,TMI)液态水路径(liquid water path,LWP)轨道像元数据为研究对象,探讨了将瞬时探测以及逐月的像元数据进行格点化(0.1°、0.25°...选取热带测雨卫星(Tropical Rainfall Measuring Mission,TRMM)微波成像仪(TRMM Microwave Imager,TMI)液态水路径(liquid water path,LWP)轨道像元数据为研究对象,探讨了将瞬时探测以及逐月的像元数据进行格点化(0.1°、0.25°、0.5°、1.0°和2.5°五种格点分辨率)时,格点数据的失真情况。对TMI瞬时探测的个例分析结果表明,细分辨率(0.1°、0.25°和0.5°)格点能保留原始像元数据的细节;而随着网格变粗,细节受到较大的平滑。因此对于中尺度到天气尺度的天气系统分析而言,将卫星轨道数据处理到网格尺度不大于0.5°的格点更合适。对逐月LWP像元资料格点化处理的分析表明,细分辨率格点能保留LWP空间分布细节,尽管5种分辨率下LWP的概率密度分布(probability density function,PDF)均相近。因此,对月尺度及以上的气候分析研究而言,格点尺度大小对卫星像元数据格点化的影响不显著。最后利用本实验室计算的TMI/LWP格点数据与欧洲中期数值预报中心再分析资料(European Centre for Medium-range Weather Forecasts Interim reanalysis,ERA-Interim)和NCEP再分析资料(NCEP Climate Forecast System Reanalysis,NCEP CFSR)进行了对比,发现两种再分析资料都高估了LWP;TMI/LWP格点数据与两种再分析资料LWP的多年变化趋势大致相同。展开更多
基金Under the auspices of Programme of Introducing Talents of Discipline to Universities by Ministry of Education and the State Administration of Foreign Experts Affairs, China (the 111 Project, No. B08048)National Natural Science Foundation of China (No. 41501017)Natural Science Foundation of Jiangsu Province (No. BK20150815)
文摘The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMORPH) are two important multi-satellite precipitation products in TRMM-era and perform important functions in GPM-era. Both TMPA and CMORPH systems simultaneously upgraded their retrieval algorithms and released their latest version of precipitation data in 2013. In this study, the latest TMPA and CMORPH products (i.e., Version-7 real-time TMPA (T-rt) and gauge-adjusted TMPA (T-adj), and Version- 1.0 real-time CMORPH (C-rt) and Version-l.0 gauge-adjusted CMORPH (C-adj)) are evaluated and intercompared by using independent rain gauge observations for a 12-year (2000--2011) period over two typical basins in China with different geographical and climate conditions. Results indicate that all TMPA and CMORPH products tend to overestimate precipitation for the high-latitude semiarid Laoha River Basin and underestimate it for the low-latitude humid Mishui Basin. Overall, the satellite precipitation products exhibit superior performance over Mishui Basin than that over Laoha River Basin. The C-adj presents the best performance over the high-latitude Laoha River Basin, whereas T-adj showed the best performance over the low-latitude Mishui Basin. The two gauge-adjusted products demonstrate potential in water resource management. However, the accuracy of two real-time satellite precipitation products demonstrates large variability in the two validation basins. The C-rt reaches a similar accuracy level with the gauge-adjusted satellite precipitation products in the high-latitude Laoha River Basin, and T-rt performs well in the low-latitude Mishui Basin. The study also reveals that all satellite precipitation products obviously overestimate light rain amounts and events over Laoha River Basin, whereas they underestimate the amount and events over Mishui Basin. The findings of the
基金supported jointly by the National Basic Research Program of China(Grant No.2010CB428601)the National Natural Science Foundation of China(Grant Nos. 40930949&40905008)
文摘Using 12 years of data from the Tropical Rainfall Measuring Mission(TRMM)-based Precipitation Radar(PR),spatial and diurnal variations of deep convective systems(DCSs)over the Asian monsoon region are analyzed.The DCSs are defined by a 20 dBZ echo top extending 14 km.The spatial distribution of DCSs genesis is also discussed,with reference to the National Centers for Environmental Prediction(NCEP)reanalysis data.The results show that DCSs occur mainly over land.They concentrate in south of 20°N during the pre-monsoon season,and then move distinctly to mid-latitude regions,with the most active region on the south slope of the Himalayas during monsoon season.DCSs over the Tibetan Plateau are more frequent than those in central-eastern China,but smaller in horizontal scale and weaker in convective intensity.DCSs in central-eastern China have more robust updrafts and generate more lightning flashes than in other Asian monsoon regions.The horizontal scale of DCSs over the ocean is larger than that over the other regions,and the corresponding minimum infrared(IR)brightness temperature is lower,whereas the convective intensity is weaker.Continental DCSs are more common from noon through midnight,and DCSs over the Tibetan Plateau are more frequently from noon through evening.Oceanic DCSs frequency has a weaker diurnal cycle with dawn maximum,and diurnal variation of DCSs over the tropical maritime continent is consistent with that over the continent.
基金supported by the Special Funds for Public Welfare of China(Grant No.GYHY201306077)CAS Strategic Priority Research Program(Grant No.XDA05100303)+1 种基金the National Natural Science Foundation of China(Grant Nos.41230419,91337213)the Jiangsu Provincial 2011 Program(Collaborative Innovation Center of Climate Change)
文摘Based on 10 years precipitation data from Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 and the best track data from China Meteorological Administration (CMA), the seasonal, monthly and annual contribution of tropical cyclone (TC) precipitation to the total rainfall are analyzed over the Western North Pacific (WNP) during 1998 to 2007 from May to December. The results show that: (1) TC seasonal rainfall contribution ranges from 4% in inland regions to above 40% in ocean-regions of 15°N-25°N. TCs at higher categories contribute much more to the total precipitation. (2) On monthly scale, TCs contribute 60% to the total rainfall regionally during whole TC season, which is the maximum contribution. The peak contribution of TC rainfall averaged in multi-months of the ten years occurs in August (28%) over the whole ocean impacted by TC and in December (23%) over the whole land impacted by TC, respectively. (3) On annual scale, the maximum contribution of TC precipitation to the total rainfall are in 2004 (-30%) over ocean and in 1998 (-20%) over land, respectively. (4) The contribution of TC precipitation to the total rainfall increases 6% (decreases 6%) in El Nino (La Nifia) years compared with neutral years.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘The performance of spectral nudging in an investigation of the 2010 East Asia summer monsoon was assessed using the Weather Research and Forecasting (WRF) model, forced by 1-degree NCEP Global Final Analysis (FNL). Two pairs of experiments were made, spectral nudging (SP) and non-spectral nudging (NOSP), with five members in each group. The members were distinguished by different initial times, and the analysis was based on the ensemble mean of the two simulation pairs. The SP was able to constrain error growth in large-scale circulation in upper-level, during simulation, and generate realistic regional scale patterns. The main focus was the model ability to simulate precipitation. The Tropical Rainfall Measuring Mission (TRMM) 3B42 product was used for precipitation verification. Mean precipitation magnitude was generally overestimated by WRF. Nevertheless, SP simulations suppressed overestimation relative to the NOSP experiments. Compared to TRMM, SP also improved model simulation of precipitation in spatial and temporal distributions, with the ability to reproduce movement of rainbands. However, extreme precipitation events were suppressed in the SP simulations.
基金funded by the Guangdong Natural Science Foundation (No.2015A030313796)the National Natural Science Foundation of China (No.41205026)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA11010104)the Knowledge Innovation Program of Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of China and the research fund for the doctoral program of Higher Education for Youths
文摘Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.
基金supported by the National Natural Science Foundation of China(40730950,40805007,41075041 and 41175032)the National Basic Research Program of China(2010CBS28601)the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-YW-Q11-04)
文摘With the unprecedented spaceborne precipitation radar(PR),the Tropical Rainfall Measuring Mission(TRMM) satellite has collected high-quality precipitation measurements for over ten years.The TRMM/PR data are nowadays extensively exploited in numerous meteorological and hydrological fields.Yet an artificial orbit boost of the TRMM satellite in August 2001 modulated the observation parameters,which inevitably affects climatological applications of the PR data and needs to be clarified.This study investigates the orbit boost effects of the TRMM satellite on the PR-derived precipitation characteristics.Both the potential impacts on precipitation frequency(PF) and precipitation intensity(PI) are carefully analyzed.The results show that the total PF decreases by 8.3% and PI increases by 4.0% over the tropics after the orbit boost.Such changes significantly exceed the natural variabilities and imply the strong effects of orbit boost on precipitation characteristics.The impacts on stratiform precipitation and convective precipitation are inconsistent,which is attributed to their distinct precipitation features.Further analysis reveal that the increased PI of stratiform precipitation is mainly due to the decreased frequencies of light precipitation,while the semi-constant PI of convective precipitation is caused by the concurrently decreased frequencies of light and heavy precipitation.A modification is applied to the post-boost PR precipitation data to retrieve the actual trends of tropical precipitation characteristics.It is found that the PI of total-precipitation approximately keeps invariable from 1998 to 2005.The total PF has no obvious trend over tropical oceans but decreases considerably over tropical lands.
基金Supported by the Open Fund of the Key Laboratory of Ocean Circulationand Waves,Chinese Academy of Sciences(No.KLOCAW1010)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX1-YW-12-04)the National High Technology Research and Development Program of China(863Program)(Nos.2007AA092202,2008AA121701)
文摘Two typical satellite sea surface temperature (SST) datasets, from the Multi-functional Transport Satellite (MTSAT) and Tropical Rainfall Measuring Mission Microwave Imager (TMI), were evaluated for the East China Sea, Yellow Sea, and Bohai Sea throughout 2008. Most monthly-mean availabilities of MTSAT are higher than those of TMI, whereas the seasonal variation of the latter is less than that of the former. The analysis on the one-year data shows that the annual mean availability of MTSAT (61%) is greater than that of TMI (56%). This is mainly because MTSAT is a geostationary satellite, which achieves longer observation than the sun-synchronous TMI. The daily availability of TMI (28%-75%) is more constant than that of MTSAT (9%-93%). The signal of infrared sensors on MTSAT is easily disturbed on cloudy days. In contrast, the TMI microwave sensor can obtain information through clouds. Based on in-situ SSTs, the SST accuracy of TMI is superior to that of MTSAT. In 2008, the root mean square (RMS) error of TMI and MTSAT were 0.77 K and 0.84 K, respectively. The annual mean biases were 0.14 K (TMI) and -0.31 K (MTSAT). To attain a high availability of SSTs, we propose a fusion method to merge both SSTs. The annual mean availability of fusion SSTs increases 17% compared to MTSAT. In addition, the availabilities of the fusion SSTs become more constant. The annual mean RMS and bias of fusion SSTs (0.78 K and -0.06 K, respectively) are better than those of MTSAT (0.84 K and -0.31 K).
文摘选取热带测雨卫星(Tropical Rainfall Measuring Mission,TRMM)微波成像仪(TRMM Microwave Imager,TMI)液态水路径(liquid water path,LWP)轨道像元数据为研究对象,探讨了将瞬时探测以及逐月的像元数据进行格点化(0.1°、0.25°、0.5°、1.0°和2.5°五种格点分辨率)时,格点数据的失真情况。对TMI瞬时探测的个例分析结果表明,细分辨率(0.1°、0.25°和0.5°)格点能保留原始像元数据的细节;而随着网格变粗,细节受到较大的平滑。因此对于中尺度到天气尺度的天气系统分析而言,将卫星轨道数据处理到网格尺度不大于0.5°的格点更合适。对逐月LWP像元资料格点化处理的分析表明,细分辨率格点能保留LWP空间分布细节,尽管5种分辨率下LWP的概率密度分布(probability density function,PDF)均相近。因此,对月尺度及以上的气候分析研究而言,格点尺度大小对卫星像元数据格点化的影响不显著。最后利用本实验室计算的TMI/LWP格点数据与欧洲中期数值预报中心再分析资料(European Centre for Medium-range Weather Forecasts Interim reanalysis,ERA-Interim)和NCEP再分析资料(NCEP Climate Forecast System Reanalysis,NCEP CFSR)进行了对比,发现两种再分析资料都高估了LWP;TMI/LWP格点数据与两种再分析资料LWP的多年变化趋势大致相同。