The surface functional groups and pyrolysis characteristics of lignite irradiated by microwave were comparatively studied to evaluate the feasibility of using industrial 915 MHz for lignite drying. The drying kinetics...The surface functional groups and pyrolysis characteristics of lignite irradiated by microwave were comparatively studied to evaluate the feasibility of using industrial 915 MHz for lignite drying. The drying kinetics, micro structure, chemical functional groups, re-adsorption properties, and pyrolysis characteristics of the dried coal were respectively analyzed. Results indicated that for typical Chinese lignite studied in this paper, 915 MHz microwave drying was 7.8 times faster than that of the hot air drying. After industrial microwave drying, the sample possessed much higher total specific surface area and specific pore volume than that of air dried sample. The oxygen functional groups and re-adsorption ratio of microwave irradiated coal decreased, showing weakened hydrophilicity. Moreover, during the pyrolysis of the coal dried by hot air and microwave, the yield of tar largely increased from 1.3% to 8.5% and the gas production increased correspondingly. The composition of the tar was also furtherly analyzed, results indicated that Miscellaneous hydrocarbons(HCs) were the main component of the tar, and microwave irradiation can reduce the fraction of polycyclic aromatic hydrocarbons(PAHs) from 26.4% to 22.7%.展开更多
Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction...Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.展开更多
基金Supported by the National Natural Science Foundation of China(51621005)the Fundamental Research Funds for the Central Universities(2017FZA4013)
文摘The surface functional groups and pyrolysis characteristics of lignite irradiated by microwave were comparatively studied to evaluate the feasibility of using industrial 915 MHz for lignite drying. The drying kinetics, micro structure, chemical functional groups, re-adsorption properties, and pyrolysis characteristics of the dried coal were respectively analyzed. Results indicated that for typical Chinese lignite studied in this paper, 915 MHz microwave drying was 7.8 times faster than that of the hot air drying. After industrial microwave drying, the sample possessed much higher total specific surface area and specific pore volume than that of air dried sample. The oxygen functional groups and re-adsorption ratio of microwave irradiated coal decreased, showing weakened hydrophilicity. Moreover, during the pyrolysis of the coal dried by hot air and microwave, the yield of tar largely increased from 1.3% to 8.5% and the gas production increased correspondingly. The composition of the tar was also furtherly analyzed, results indicated that Miscellaneous hydrocarbons(HCs) were the main component of the tar, and microwave irradiation can reduce the fraction of polycyclic aromatic hydrocarbons(PAHs) from 26.4% to 22.7%.
基金Supported by the National Natural Science Foundation of China(51503154,51776141)Major Projects of China Water Pollution Control and Treatment Science and Technology(2017ZX07202005)
文摘Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.