期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于融合结构的在线广告点击率预测模型 被引量:14
1
作者 刘梦娟 曾贵川 +2 位作者 岳威 刘瑶 秦志光 《计算机学报》 EI CSCD 北大核心 2019年第7期1570-1587,共18页
点击率预测作为推荐系统和在线广告的关键环节,在学术界和工业界均受到了极大的关注.论文首先对几种典型的点击率预测模型进行研究,然后探索了基于融合结构的深度学习方法,并在此基础上提出一种基于融合结构的点击率预测模型,该模型能... 点击率预测作为推荐系统和在线广告的关键环节,在学术界和工业界均受到了极大的关注.论文首先对几种典型的点击率预测模型进行研究,然后探索了基于融合结构的深度学习方法,并在此基础上提出一种基于融合结构的点击率预测模型,该模型能够灵活融合不同结构的深度神经网络来分别学习原始高维稀疏特征的高阶表示,从而使点击率预测模型能够利用更丰富的高阶特征信息.论文利用真实数据集来评价模型的预测性能,实验结果显示,基于融合结构的深度学习预测模型,能够比传统的点击率预测模型以及最新的基于深度学习的预测模型获得更好的性能。 展开更多
关键词 点击率预测 逻辑回归 因子分解机 深度神经网络 融合结构
下载PDF
基于卷积-LSTM网络的广告点击率预测模型研究 被引量:13
2
作者 厍向阳 王邵鹏 《计算机工程与应用》 CSCD 北大核心 2019年第2期193-197,共5页
点击率预测是计算广告学的核心算法之一。传统浅层模型没有充分考虑到数据之间存在的非线性关系,且使用人工特征提取方法费时费力。针对这些问题,提出了基于卷积(Convolutional Neural Networks)-LSTM(Long Short Term Memory)混合神经... 点击率预测是计算广告学的核心算法之一。传统浅层模型没有充分考虑到数据之间存在的非线性关系,且使用人工特征提取方法费时费力。针对这些问题,提出了基于卷积(Convolutional Neural Networks)-LSTM(Long Short Term Memory)混合神经网络的广告点击率预测模型。该模型使用卷积神经网络提取高影响力特征,并通过LSTM神经网络的时序性进行预测分类。实验结果证明:与浅层模型或单一结构的神经网络模型相比,基于卷积-LSTM的混合神经网络模型能有效提高广告点击事件的预测准确率。 展开更多
关键词 点击率预测 机器学习 卷积神经网络 长短期记忆
下载PDF
基于用户相似度和特征分化的广告点击率预测研究 被引量:13
3
作者 潘书敏 颜娜 谢瑾奎 《计算机科学》 CSCD 北大核心 2017年第2期283-289,共7页
大数据环境下如何对互联网广告进行精准投放一直是计算广告学领域高度关注的问题。作为在线广告投放效果的一个重要指标,点击率的精确预测关系到媒体、用户和广告主三方的利益。目前的主流方法是通过抽取特征建立单一点击率预测模型,其... 大数据环境下如何对互联网广告进行精准投放一直是计算广告学领域高度关注的问题。作为在线广告投放效果的一个重要指标,点击率的精确预测关系到媒体、用户和广告主三方的利益。目前的主流方法是通过抽取特征建立单一点击率预测模型,其不足之处在于使用单个权重来度量特征对点击率的影响过于片面。该研究基于分而治之的思想,提出了基于用户相似度和特征分化的混成模型。该模型首先根据混合高斯分布来评估用户相似度,将其划分为多个群体。针对不同群体,分别构建子模型并进行有效组合,从而挖掘同一特征对不同群体的差异化影响,进而准确地预测广告点击行为。通过使用真实互联网公司的广告数据集进行实验,并与主流方法做了详细的对比分析,检验了该方法的有效性。 展开更多
关键词 计算广告学 点击率预测 用户相似度 特征分化 混成模型
下载PDF
面向数据挖掘类课程的挑战性综合实验的设计与实践 被引量:10
4
作者 刘梦娟 曾贵川 +1 位作者 刘瑶 陆庆 《实验科学与技术》 2019年第1期85-88,106,共5页
挑战性学习作为一种新的教育理念正在国内一流高校逐渐兴起。该文针对目前数据挖掘类课程缺乏系统性综合实验的问题,结合挑战性学习理论,设计了面向这类课程的挑战性综合实验。实验内容包括评论意见抽取和广告投放点击率预测两个题目,... 挑战性学习作为一种新的教育理念正在国内一流高校逐渐兴起。该文针对目前数据挖掘类课程缺乏系统性综合实验的问题,结合挑战性学习理论,设计了面向这类课程的挑战性综合实验。实验内容包括评论意见抽取和广告投放点击率预测两个题目,每个题目都分别包括完成性和挑战性两个部分。在完成性部分学生利用课堂中学到的基本模型来完成实验,在挑战性部分鼓励学生探索最新的解决方案来提升实验的性能指标。实践结果显示,学生在理论学习深度、实践动手能力、学术研究兴趣以及团队协作方面有较大程度的提升。 展开更多
关键词 挑战性学习 综合实验 数据挖掘 意见抽取 点击率预测
下载PDF
面向展示广告的点击率预测模型综述 被引量:10
5
作者 刘梦娟 曾贵川 +2 位作者 岳威 仇笠舟 王加昌 《计算机科学》 CSCD 北大核心 2019年第7期38-49,共12页
点击率预测模型的研究近年来备受学术界和工业界的关注。针对展示广告定向投放的点击率预测模型,研究了样本特征的预处理技术、基于传统机器学习模型的CTR预测方案、基于最新的深度学习模型的CTR预测方案、CTR预测模型的主要性能评价指... 点击率预测模型的研究近年来备受学术界和工业界的关注。针对展示广告定向投放的点击率预测模型,研究了样本特征的预处理技术、基于传统机器学习模型的CTR预测方案、基于最新的深度学习模型的CTR预测方案、CTR预测模型的主要性能评价指标等,并基于一个开放数据集对其中的典型方案给出性能对比和量化分析,最后讨论了目前面向展示广告的点击率预测模型研究存在的问题和未来发展趋势。 展开更多
关键词 点击率预测 定向广告 逻辑回归 因子分解机 深度学习
下载PDF
基于特征工程的视频点击率预测算法 被引量:10
6
作者 匡俊 唐卫红 +4 位作者 陈雷慧 陈辉 曾炜 董启民 高明 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期77-87,共11页
点击率预测技术在视频推荐系统中具有重要的作用.视频推荐系统可以根据点击率预测的结果调整投放顺序,从而提高用户的真实点击率.在点击率预测问题中,由于数据存在海量性以及不平衡性等问题,点击率预测的精确度一般都较低.针对以上问题... 点击率预测技术在视频推荐系统中具有重要的作用.视频推荐系统可以根据点击率预测的结果调整投放顺序,从而提高用户的真实点击率.在点击率预测问题中,由于数据存在海量性以及不平衡性等问题,点击率预测的精确度一般都较低.针对以上问题,使用特征工程和机器学习相结合的方法,有效地改进了现有的视频点击率预测算法的性能.首先,使用特征工程方法,从原始数据中提取特征,并使用矩阵分解等方法生成交叉特征;然后,分别基于逻辑回归、因子分解机和梯度提升决策树-逻辑回归实现点击率预测模型.实验结果表明,基于因子分解机模型和基于梯度提升决策树-逻辑回归模型的预测精度要优于基于逻辑回归的模型,并且将用户特征和视频特征进行交叉组合能够改进点击率预测的精度. 展开更多
关键词 点击率预测 特征工程 因子分解机 梯度提升决策树
下载PDF
基于卷积神经网络的搜索广告点击率预测 被引量:10
7
作者 李思琴 林磊 孙承杰 《智能计算机与应用》 2015年第5期22-25,28,共5页
广告点击率的预测是搜索广告进行投放的基础。目前已有的工作大多数使用线性模型或基于推荐方法的模型解决点击率预测问题,但这些方法没有对特征之间的关系进行深入的探索,无法完全体现广告点击预测中各个特征之间的关系。本文提出了基... 广告点击率的预测是搜索广告进行投放的基础。目前已有的工作大多数使用线性模型或基于推荐方法的模型解决点击率预测问题,但这些方法没有对特征之间的关系进行深入的探索,无法完全体现广告点击预测中各个特征之间的关系。本文提出了基于卷积神经网络的搜索广告点击率预测的方法,阐述了卷积神经网络在特征的学习上模拟人的思维过程,并进一步分析了不同特征在广告点击率预测中的作用,在KDD Cup 2012中Track 2数据集上的实验结果验证了本文提出的方法能够提高搜索广告点击率的预测效果,其AUC值达到0.792 5。 展开更多
关键词 卷积神经网络 点击率预测 搜索广告
下载PDF
基于多粒度特征交叉剪枝的点击率预测模型
8
作者 白婷 刘轩宁 +3 位作者 吴斌 张梓滨 徐志远 林康熠 《计算机研究与发展》 EI CSCD 北大核心 2024年第5期1290-1298,共9页
在推荐系统中,学习有效的高阶特征交互是提升点击率预测的关键.现有的研究将低阶特征进行组合来学习高阶交叉特征表示,导致模型的时间复杂度随着特征维度的增加呈指数型增长;而基于深度神经网络的高阶特征交叉模型也无法很好地拟合低阶... 在推荐系统中,学习有效的高阶特征交互是提升点击率预测的关键.现有的研究将低阶特征进行组合来学习高阶交叉特征表示,导致模型的时间复杂度随着特征维度的增加呈指数型增长;而基于深度神经网络的高阶特征交叉模型也无法很好地拟合低阶特征交叉,影响预测的准确率.针对这些问题,提出了基于多粒度特征交叉剪枝的点击率预测模型FeatNet.该模型首先在显式的特征粒度上,通过特征剪枝生成有效的特征集合,保持了不同特征组合的多样性,也降低了高阶特征交叉的复杂度;基于剪枝后的特征集合,在特征元素粒度上进一步进行隐式高阶特征交叉,通过滤波器自动过滤无效的特征交叉.在2个真实的数据集上进行了大量的实验,FeatNet都取得了最优的点击率预测效果. 展开更多
关键词 点击率预测 高阶特征交叉 多粒度 特征剪枝 特征降噪
下载PDF
面向点击率预测的自注意力深度域嵌入因子分解机
9
作者 李广丽 叶艺源 +3 位作者 许广鑫 张红斌 吴光庭 吕敬钦 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第5期287-296,共10页
点击率(CTR)预测通过预测用户对广告或商品的点击概率,实现数字广告精准推荐。针对现有CTR模型存在原始嵌入向量未精化、特征交互方式偏简单的问题,本文提出自注意力深度域嵌入因子分解机(self-attention deep field-embedded factoriza... 点击率(CTR)预测通过预测用户对广告或商品的点击概率,实现数字广告精准推荐。针对现有CTR模型存在原始嵌入向量未精化、特征交互方式偏简单的问题,本文提出自注意力深度域嵌入因子分解机(self-attention deep field-embedded factorization machine,Self-AtDFEFM)模型。首先,通过多头自注意力对原始嵌入向量加权,精化出关键低层特征;其次,构建深度域嵌入因子分解机(FEFM)模块,设计域对对称矩阵以提升不同特征域之间的交互强度,为高阶特征交互优选出低阶特征组合;再次,基于低阶特征组合构建深度神经网络(DNN),完成隐式高阶特征交互;然后,围绕精化后的嵌入向量,联合多头自注意力与残差机制堆叠多个显式高阶特征交互层,通过自注意力捕获同一特征在不同子空间上的互补信息,完成显示高阶特征交互;最后,联合显式与隐式高阶特征交互实现点击率预测。在Criteo和Avazu两大公开数据集上,将Self-AtDFEFM模型与主流基线模型在AUC和LogLoss指标上进行对比实验;为Self-AtDFEFM模型调制显式高阶特征交互层层数、注意力头数量、嵌入层维度及隐式高阶特征交互层层数等参数;对Self-AtDFEFM模型进行消融实验。实验结果表明:在两大数据集上,Self-AtDFEFM模型的AUC、LogLoss均优于主流基线模型;Self-AtDFEFM模型的全部参数已调为最佳;各模块形成合力以促使Self-AtDFEFM模型性能达到最优,其中显示高阶特征交互层的作用最大。Self-AtDFEFM模型各模块即插即用,易于构建和部署,且在性能与复杂度之间取得平衡,具备较高实用性。 展开更多
关键词 点击率预测 多头自注意力 特征交互 域嵌入因子分解机 深度神经网络
下载PDF
基于改进Fi-GNN模型的点击率预测方法
10
作者 夏义春 李汪根 +2 位作者 李豆豆 高坤 束阳 《计算机工程与设计》 北大核心 2024年第6期1720-1727,共8页
为解决基线模型(Fi-GNN)特征交互模块设计不合理的问题,提出一种基于改进Fi-GNN模型的点击率预测方法(Fi-GNN-V2)。针对特征交互模块的邻接矩阵没有考虑到异构节点间的多元关系,在计算异构节点间相互作用的权重时增加边类型的嵌入向量,... 为解决基线模型(Fi-GNN)特征交互模块设计不合理的问题,提出一种基于改进Fi-GNN模型的点击率预测方法(Fi-GNN-V2)。针对特征交互模块的邻接矩阵没有考虑到异构节点间的多元关系,在计算异构节点间相互作用的权重时增加边类型的嵌入向量,得到更合理的邻接矩阵;通过多头聚合多个子空间的邻居信息学习不同方式的特征交互;融合二阶以及三阶特征组合解决特征交互模块造成特征域的语义信息丢失问题,设计注意力模块抑制无用特征组合对模型学习的干扰;为进一步提升模型的性能,结合深度神经网络隐式捕捉高阶非线性的特征组合进行联合预测。实验结果表明,该方法优于其它主流点击率预测模型。 展开更多
关键词 点击率预测 邻接矩阵 异构节点 多空间聚合 语义信息 注意力模块 深度神经网络
下载PDF
基于分层注意力图神经网络的点击率预测模型
11
作者 王志格 李汪根 +3 位作者 夏义春 杨航 张根生 开新 《微电子学与计算机》 2024年第8期10-21,共12页
点击率预测是推荐系统和在线广告中的一项基本任务,大多主流模型主要通过高阶特征和低阶特征交互建模以提高模型性能和泛化能力,然而很多模型只学习了每个特征的固定表示而没有考虑在不同上下文中每个特征的重要性。针对基线模型(Featur... 点击率预测是推荐系统和在线广告中的一项基本任务,大多主流模型主要通过高阶特征和低阶特征交互建模以提高模型性能和泛化能力,然而很多模型只学习了每个特征的固定表示而没有考虑在不同上下文中每个特征的重要性。针对基线模型(Feature Refinement Network,FRNet)在不同上下文无法灵活处理重要特征选择,并且缺乏良好解释性的问题,提出了一种特征细化分层注意力图神经网络(Feature Refinement Graph Neural Network and Hierarchical Attention,FRGNN-HA)模型。首先,在基线模型中融合图神经网络结构,利用图神经网络聚合邻节点和自身节点特征以实现在非欧式空间新节点的表示向量的更新,从而提升在不同上下文的重要特征选择能力和良好的解释性。其次,在图神经网络的基础上设计分层注意力网络,让模型可以更好地自适应关注重要上下文信息,并且可以在噪声和复杂场景下依然保持较好的性能。最后,FRGNN-HA通过在Criteo、Frappe和MovieLens这3个数据集上对比实验结果表明,与基线FRNet模型相比,曲线下的面积(Area Under Curve,AUC,记为AUC)指标分别提升了0.07%、0.29%和0.06%,交叉熵损失函数Logloss(记为Lloss)分别降低了0.08%、0.81%和1.09%。 展开更多
关键词 点击率预测 特征细化 图神经网络 分层注意力网络
下载PDF
基于分离嵌入交叉网络的推荐模型 被引量:2
12
作者 封书蕾 蒋中云 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2023年第4期513-520,共8页
针对现有深度学习推荐模型中的特征交叉方法存在无法充分利用嵌入向量信息与预测的精度不够的问题,提出一种基于分离嵌入交叉网络(separated embedding interaction networks,SEIN)的深度学习推荐模型.该模型先采用嵌入神经网络层将稀... 针对现有深度学习推荐模型中的特征交叉方法存在无法充分利用嵌入向量信息与预测的精度不够的问题,提出一种基于分离嵌入交叉网络(separated embedding interaction networks,SEIN)的深度学习推荐模型.该模型先采用嵌入神经网络层将稀疏的特征向量转化为稠密的嵌入向量,再对不同维度的特征矩阵分离进行特征交叉,并且通过分离嵌入交叉网络层数显式控制特征交叉的阶数,最终将得到的各隐藏层矩阵求和池化,并通过预测层得到最后的输出.在Criteo、AutoML与Movielens公开数据集上,以推荐结果的曲线下面积、对数损失、准确率与召回率作为评估指标进行了点击率预测与top-k推荐实验.结果表明,与点击率预测基线模型DeepFM、Deep&Cross与xDeepFM对比,SEIN模型在Criteo数据集上的曲线下面积分别提升了2.38%、2.31%与2.35%,对数损失分别下降了1.81%、1.99%与1.85%;在AutoML数据集上曲线下面积分别提高了1.17%、2.60%与0.57%,对数损失分别下降了0.66%、2.53%与0.35%.与基于图神经网络的推荐模型HeteGraph、IR-Rec、GSIRec、KGNCF-RNN和ITRA相比,基于SEIN的推荐模型的准确率(k=5)分别提升1.27%、0.47%、0.48%、0.56%与2.59%.基于SEIN的推荐模型能够有效解决无法充分利用嵌入向量信息的问题,提高推荐准确度. 展开更多
关键词 人工智能 推荐技术 深度学习 特征交叉 向量稠密化 数据挖掘 点击率预测
下载PDF
基于场矩阵分解机和CNN的点击率预测模型
13
作者 王志格 李汪根 +3 位作者 夏义春 高坤 束阳 葛英奎 《计算机系统应用》 2024年第1期87-98,共12页
点击率预测是在线广告和推荐系统的基本任务之一.主流模型通常通过对高阶和低阶特征进行特征交互建模来提升性能和泛化能力.然而,许多模型往往仅学习每个特征的固定表示,而忽视了特征在不同上下文中的重要性,并且一些模型结构过于简单.... 点击率预测是在线广告和推荐系统的基本任务之一.主流模型通常通过对高阶和低阶特征进行特征交互建模来提升性能和泛化能力.然而,许多模型往往仅学习每个特征的固定表示,而忽视了特征在不同上下文中的重要性,并且一些模型结构过于简单.因此,本文提出了特征细化卷积神经网络融合场矩阵分解机(FRCNN-F)模型,以解决这些问题.首先,在特征细化网络(FRNet)中融合了卷积神经网络的特征生成模块,利用其在局部模式下重新组合生成新特征的优势,提升了重要特征选择能力.其次,设计了场矩阵分解机,使模型能够感知上下文并通过不同场的交互进行显示建模,从而增加了子模型的组合方式.最后,通过在Frappe和MovieLens两个公开数据集上对比实验,实验结果表明,FRCNN-F模型相比基线FRNet在AUC得分分别提升了0.32%和0.40%,交叉熵损失函数Logloss分别降低了1.50%和1.11%.该研究对于实现广告的精准投放和个性化推荐具有实际应用的价值. 展开更多
关键词 点击率预测 特征交互 特征细化网络 卷积神经网络 场矩阵分解机
下载PDF
考虑兴趣序列和特征交互的司机点击率预测模型
14
作者 方芳 《物流科技》 2024年第6期62-67,共6页
车货匹配平台中存在着大量的车货信息,通过对历史数据的分析和处理,能够预测司机点击货物的概率(司机点击率预测),从而为司机推荐货物。据了解,目前还没有研究项目将点击率预测与车货匹配结合起来,更不要说基于此来考虑车货信息中的兴... 车货匹配平台中存在着大量的车货信息,通过对历史数据的分析和处理,能够预测司机点击货物的概率(司机点击率预测),从而为司机推荐货物。据了解,目前还没有研究项目将点击率预测与车货匹配结合起来,更不要说基于此来考虑车货信息中的兴趣序列和特征交互问题。因此,在车货匹配的背景下,文章提出了一种考虑兴趣序列和特征交互的司机点击率预测模型——深度兴趣交互网络(Deep Interest Interaction Network,DIIN)。一方面,在司机兴趣抽取模块中利用Bi-GRU和SENet从司机的历史行为中推断出司机的兴趣点;另一方面,在车货特征交互模块中利用FM和Res Net同时建模低阶和高阶特征交互。通过对某车货匹配平台的数据集进行实验,结果表明模型DIIN与基准模型相比具有更好的性能,即使与DIEN模型相比,在AUC和Log Loss两个评价指标上,模型DIIN分别提升了3.5个百分点和1.8个百分点。这不仅证明了将深度学习和点击率预测用于车货匹配的可行性,也证明了挖掘历史数据中的序列关系和特征交互有助于预测车货匹配中司机点击货物的概率。 展开更多
关键词 车货匹配 深度学习 点击率预测 双向门控循环单元 挤压和激励网络
下载PDF
基于细粒度特征交互选择网络的农产品推荐算法
15
作者 白雪 王霞光 +2 位作者 金继鑫 宋春梅 赵思彤 《计算机系统应用》 2024年第5期271-279,共9页
在数字化的时代里,越来越多人偏爱在电商平台购物,随着农产品电商平台的发展,消费者面对众多选择时难以找到适合自己的产品.为了提高用户满意度和购买意愿,农产品电商平台需要根据用户的兴趣偏好向其推荐合适的农产品.考虑到季节、地域... 在数字化的时代里,越来越多人偏爱在电商平台购物,随着农产品电商平台的发展,消费者面对众多选择时难以找到适合自己的产品.为了提高用户满意度和购买意愿,农产品电商平台需要根据用户的兴趣偏好向其推荐合适的农产品.考虑到季节、地域、用户兴趣和农产品属性等多种农业特征,通过特征交互可以更好地捕捉用户需求.传统的点击通过率CTR (click through rate)预测模型只关注用户评分,以简单的方式计算特征交互,而忽略了特征交互的重要性.本文提出了一种名为细粒度特征交互选择网络FgFisNet (fine-grained feature interaction selection networks)的新模型.该模型通过引入细粒度交互层和特征交互选择层,组合内积和哈达玛积有效地学习特征交互,然后在训练过程中自动识别重要的特征交互,并删除冗余的特征交互,最后将重要的特征交互和一阶特征输入到深度神经网络,得到最终的CTR预测值.在农产品电商真实数据集上进行广泛的实验,FgFisNet方法取得了显著的经济效益. 展开更多
关键词 农产品推荐 点击率预测 特征交互 特征选择 深度神经网络
下载PDF
基于压缩激励网络的注意力因子分解机的点击率预测模型
16
作者 梅文凯 肖迎元 《天津理工大学学报》 2024年第2期7-12,共6页
在互联网技术日趋成熟的今天,广告的点击率(click-through rate,CTR)预测得到越来越多的关注。在特定的商业环境下,广告CTR预测模型的改进可以带来巨大的经济效益。然而特征的多样性和复杂性使得传统的预测模型难以发现海量特征中的重... 在互联网技术日趋成熟的今天,广告的点击率(click-through rate,CTR)预测得到越来越多的关注。在特定的商业环境下,广告CTR预测模型的改进可以带来巨大的经济效益。然而特征的多样性和复杂性使得传统的预测模型难以发现海量特征中的重要特征。针对上述问题,提出了基于压缩激励网络的注意力因子分解机的点击率预测模型(squeeze and excitation network based attentional factorization machines model for click-through rate prediction,SEAFM),SEAFM模型通过压缩和激励网络来动态学习特征的重要性,通过注意力网络来学习特征交互的权重,通过深度神经网络(deep neural network,DNN)模块来隐式建模高阶特征交互。实验结果显示,SEAFM模型比现有相关模型具有更好的性能。 展开更多
关键词 点击率预测 注意力机制 压缩和激励网络 特征交互
下载PDF
基于特征增强聚合的融合广告点击率预测模型 被引量:4
17
作者 蒋兴渝 黄贤英 +1 位作者 陈雨晶 徐福 《计算机工程》 CAS CSCD 北大核心 2022年第1期312-320,共9页
传统点击率(CTR)预测模型多在单一特征级上进行特征交互,未能充分利用不同特征级上的有效信息。基于特征增强聚合方法提出一种融合广告CTR预测(APNN)模型。在CTR预测模型的嵌入层中引入一阶信息重要性进行特征增强,通过注意力因子分解机... 传统点击率(CTR)预测模型多在单一特征级上进行特征交互,未能充分利用不同特征级上的有效信息。基于特征增强聚合方法提出一种融合广告CTR预测(APNN)模型。在CTR预测模型的嵌入层中引入一阶信息重要性进行特征增强,通过注意力因子分解机(AFM)模型与基于乘积产生层的神经网络(PNN)模型融合不同特征级交互特征和增强的嵌入特征,并利用多个全连接层从融合特征中获得更多潜在的高阶信息。实验结果表明,相比AFM、PNN、FNN等模型,APNN模型的预测精度较高,其在Criteo数据集上的AUC和LogLoss指标较PNN模型分别提高1.74和1.42个百分点。 展开更多
关键词 点击率预测 一阶信息重要性 特征增强 因子分解机 深度神经网络
下载PDF
实时竞价在展示广告中的应用研究及进展 被引量:5
18
作者 刘梦娟 岳威 +2 位作者 仇笠舟 李家兴 秦志光 《计算机学报》 EI CSCD 北大核心 2020年第10期1810-1841,共32页
随着在线广告在产业界取得巨大成功,其在学术界特别是数据挖掘和机器学习领域的研究也吸引了大量学者的关注.本论文围绕实时竞价机制在展示广告投放中的关键问题展开研究.首先介绍了实时竞价的基本流程、主要参与者的功能、定价模型和... 随着在线广告在产业界取得巨大成功,其在学术界特别是数据挖掘和机器学习领域的研究也吸引了大量学者的关注.本论文围绕实时竞价机制在展示广告投放中的关键问题展开研究.首先介绍了实时竞价的基本流程、主要参与者的功能、定价模型和交易机制;然后分别从需求方、供应方和交易中心的角度,介绍了实时竞价中存在的关键问题,以及目前的研究方法、理论和模型,具体包括:用户响应预测、出价策略、预算与步进管理、保留价优化、库存分配、拍卖机制等,特别针对用户响应预测和出价策略两个研究热点展开了广泛讨论,并对其中的代表性方法进行了量化对比;此基础上对主要的广告欺诈方式和检测手段进行了整理;最后对该方向未来的研究趋势进行展望. 展开更多
关键词 展示广告 实时竞价 点击率预测 出价策略 广义第二价格拍卖 广告欺诈
下载PDF
基于深度神经网络的点击率预测模型 被引量:4
19
作者 刘弘历 武森 +2 位作者 魏桂英 李新 高晓楠 《工程科学学报》 EI CSCD 北大核心 2022年第11期1917-1925,共9页
针对现有深度神经网络点击率预测模型在对用户偏好建模时,难以有效且高效地处理用户行为序列的问题,提出长短期兴趣网络(Long and short term interests network,LSTIN)模型,充分利用用户历史记录上下文信息和顺序信息,提升点击率预测... 针对现有深度神经网络点击率预测模型在对用户偏好建模时,难以有效且高效地处理用户行为序列的问题,提出长短期兴趣网络(Long and short term interests network,LSTIN)模型,充分利用用户历史记录上下文信息和顺序信息,提升点击率预测精准性和训练效率.使用基于注意力机制的Transformer和激活单元结构完成用户长、短期兴趣建模,对用户短期兴趣进一步使用循环神经网络(Recurrent neural network,RNN)、卷积神经网络(Convolutional neural networks,CNN)进行处理,最后使用全连接神经网络进行预测.在亚马逊公开数据集上开展实验,将提出的模型与基于分解机的神经网络(DeepFM)、深度兴趣网络(Deep interest network,DIN)等点击率预测模型对比,结果表明提出的模型实现了考虑上下文信息和顺序信息的用户历史记录建模,接受者操作特征曲线下面积(Area under curve,AUC)指标为85.831%,相比于基础模型(BaseModel)提升1.154%,相比于DIN提升0.476%.且因区分用户长、短期兴趣,模型能够在提升预测精准性的同时保障训练效率. 展开更多
关键词 点击率预测 长短期兴趣网络 深度神经网络 注意力机制 循环神经网络 卷积神经网络
下载PDF
在线广告点击率预测方法的研究综述
20
作者 龚雪鸾 陈艳姣 王帅 《中文信息学报》 CSCD 北大核心 2023年第4期1-17,共17页
在在线广告和推荐系统中,准确预测点击率(Click-Through Rate,CTR)是至关重要的。CTR是广告被点击次数与广告被展示次数的比值。过去,许多传统的机器学习算法,如逻辑回归、支持向量机,因为简单且易于实现而被广泛地应用于广告点击率预... 在在线广告和推荐系统中,准确预测点击率(Click-Through Rate,CTR)是至关重要的。CTR是广告被点击次数与广告被展示次数的比值。过去,许多传统的机器学习算法,如逻辑回归、支持向量机,因为简单且易于实现而被广泛地应用于广告点击率预测工作。然而,这些传统算法往往需要复杂的特征工程。相较之下,深度学习模型能够有效自动提取高阶特征,可以较好地解决这一问题。此外,为了实现更高效、更准确的性能,融合了嵌入式和钦层感知器(Multilayer Perceptron,MLP)的优点的混合架构近年来被广泛地应用。该文对预测点击率的方法进行了全面的研究,不仅根据现有解决方案的架构将其分为三类,而且对每一类进行了详细的概述。最后,该文指出了该领域存在的挑战和未来发展方向,为进一步研究指明可能的途径。 展开更多
关键词 点击率预测 陈列式广告 机器学习
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部