三维激光雷达广泛应用在智能车系统中,点云目标分割是智能车环境感知中的关键技术。针对目前三维激光雷达点云目标分割算法实时性和准确性不高的问题,提出一种基于深度图的点云目标快速分割方法。将点云数据表示为深度图,建立深度图与...三维激光雷达广泛应用在智能车系统中,点云目标分割是智能车环境感知中的关键技术。针对目前三维激光雷达点云目标分割算法实时性和准确性不高的问题,提出一种基于深度图的点云目标快速分割方法。将点云数据表示为深度图,建立深度图与点云数据的映射关系。利用激光雷达扫描线的角度阈值去除地面点云数据,结合深度图和自适应参数改进的DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法对非地面点云进行聚类分割。实验结果表明该方法相对于传统聚类算法在时间效率上有很大的提升,且能较好地降低欠分割错误率,分割准确度提升10%,达到了85.02%。展开更多
点云分割在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域具有重要意义。为提高对激光雷达采集点云分割的准确率,提出了一种基于深度图的道路场景三维点云分割优化方法。将点云数据转化为深度图,建立三维点云与深度图之间的投影关系...点云分割在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域具有重要意义。为提高对激光雷达采集点云分割的准确率,提出了一种基于深度图的道路场景三维点云分割优化方法。将点云数据转化为深度图,建立三维点云与深度图之间的投影关系,利用相邻激光雷达扫描线的角度阈值进行地物分割,再对分割后的地上物体进行分割,去除噪声点。通过使用KNN(K-Nearest Neighbor)插值优化算法对分割结果进一步优化,较好地克服了过分割问题,提高了点云分割的准确率。实验结果表明,该方法的运行时间达到86 ms,相较传统深度图的自适应DBSCAN(Density-Based Spatial Clustering of Applications with Noise)方法准确率提升了5%,达到90.5%。展开更多
文摘三维激光雷达广泛应用在智能车系统中,点云目标分割是智能车环境感知中的关键技术。针对目前三维激光雷达点云目标分割算法实时性和准确性不高的问题,提出一种基于深度图的点云目标快速分割方法。将点云数据表示为深度图,建立深度图与点云数据的映射关系。利用激光雷达扫描线的角度阈值去除地面点云数据,结合深度图和自适应参数改进的DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法对非地面点云进行聚类分割。实验结果表明该方法相对于传统聚类算法在时间效率上有很大的提升,且能较好地降低欠分割错误率,分割准确度提升10%,达到了85.02%。
文摘点云分割在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域具有重要意义。为提高对激光雷达采集点云分割的准确率,提出了一种基于深度图的道路场景三维点云分割优化方法。将点云数据转化为深度图,建立三维点云与深度图之间的投影关系,利用相邻激光雷达扫描线的角度阈值进行地物分割,再对分割后的地上物体进行分割,去除噪声点。通过使用KNN(K-Nearest Neighbor)插值优化算法对分割结果进一步优化,较好地克服了过分割问题,提高了点云分割的准确率。实验结果表明,该方法的运行时间达到86 ms,相较传统深度图的自适应DBSCAN(Density-Based Spatial Clustering of Applications with Noise)方法准确率提升了5%,达到90.5%。