期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
无人机遥感反演小麦地上生物量模型的特征选择
1
作者
吴立峰
徐文浩
韩宜秀
《南昌工程学院学报》
CAS
2024年第4期56-62,共7页
无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB)。然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征。因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义。本文提出了一种可以同时实现特征筛选与...
无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB)。然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征。因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义。本文提出了一种可以同时实现特征筛选与参数优化的混合编码灰狼粒子群优化算法(CGWOPSO)。同时,为评估基于该算法驱动的极限梯度提升模型(CGWOPSO-XGB)的性能,将其及基于两种流行特征筛选方法(Pearson和SHAP方法)的模型(P-XGB和S-XGB)的反演AGB表现进行了对比。结果表明,S-XGB模型优于P-XGB模型,前者均方根误差(RMSE)比后者低3.0%~16.3%;而CGWOPSO-XGB模型精度高于S-XGB模型,前者RMSE比后者低16.0%。
展开更多
关键词
混合编码
灰狼
粒子
群
优化算法
SHAP
特征筛选
植被指数
下载PDF
职称材料
题名
无人机遥感反演小麦地上生物量模型的特征选择
1
作者
吴立峰
徐文浩
韩宜秀
机构
南昌工程学院水土保持学院
出处
《南昌工程学院学报》
CAS
2024年第4期56-62,共7页
基金
江西省教育厅科学技术研究项目(GJJ211904)
江西省科技厅重点研发项目(20212BDH80016)。
文摘
无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB)。然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征。因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义。本文提出了一种可以同时实现特征筛选与参数优化的混合编码灰狼粒子群优化算法(CGWOPSO)。同时,为评估基于该算法驱动的极限梯度提升模型(CGWOPSO-XGB)的性能,将其及基于两种流行特征筛选方法(Pearson和SHAP方法)的模型(P-XGB和S-XGB)的反演AGB表现进行了对比。结果表明,S-XGB模型优于P-XGB模型,前者均方根误差(RMSE)比后者低3.0%~16.3%;而CGWOPSO-XGB模型精度高于S-XGB模型,前者RMSE比后者低16.0%。
关键词
混合编码
灰狼
粒子
群
优化算法
SHAP
特征筛选
植被指数
Keywords
hybrid coding
Grey Wolf particle swarm optimization algorithm
SHAP
feature selection
vegetation index
分类号
S512.1 [农业科学—作物学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
无人机遥感反演小麦地上生物量模型的特征选择
吴立峰
徐文浩
韩宜秀
《南昌工程学院学报》
CAS
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部